-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0259.cpp
184 lines (163 loc) · 6.08 KB
/
euler-0259.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// ////////////////////////////////////////////////////////
// # Title
// Reachable Numbers
//
// # URL
// https://projecteuler.net/problem=259
// http://euler.stephan-brumme.com/259/
//
// # Problem
// A positive integer will be called reachable if it can result from an arithmetic expression obeying the following rules:
//
// - Uses the digits 1 through 9, in that order and exactly once each.
// - Any successive digits can be concatenated (for example, using the digits 2, 3 and 4 we obtain the number 234).
// - Only the four usual binary arithmetic operations (addition, subtraction, multiplication and division) are allowed.
// - Each operation can be used any number of times, or not at all.
// - Unary minus is not allowed.
// - Any number of (possibly nested) parentheses may be used to define the order of operations.
//
// For example, 42 is reachable, since (1/23) * ((4*5)-6) * (78-9) = 42.
//
// What is the sum of all positive reachable integers?
//
// # Solved by
// Stephan Brumme
// July 2017
//
// # Algorithm
// I wrote a very basic ''struct Fraction'' to represent a rational number. It supports addition, multiplication, division and comparison.
// It doesn't care about signs, division-by-zero and so on.
//
// My ''search'' function returns all fractions that can be generated by splitting its ''std::string'' parameter in any possible way
// and applying any allowed operation:
// - it splits its input into two parts
// - then calls itself recursively to get all fractions generated by the left part and by the right part
// - two nested loops add, subtract, multiply and divide all fractions from the left part with all fractions from the right part
// - invalid things, like division-by-zero, are rejected and subtraction is simulated by adding with a negated numerator
// - there might be several combinations that produce the same result, therefore the output is sorted and ''std::unique'' ensures only unique fractions are left
// - (I don't reduce fractions and so it's possible to have the same fraction multiple times if their numerators and denominators differ by a factor)
//
// ''main'' has to check whether these fractions are positive integers.
// And finally all duplicates are removed and the sum of all unique integers is displayed.
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
// a rational number
// fractions are neither reduced nor is the sign kept consistent
// (both numerator and denominator might be negative)
struct Fraction
{
// create a new number
Fraction(unsigned int numerator_, unsigned int denominator_ = 1)
: numerator(numerator_), denominator(denominator_)
{}
// add
Fraction operator+(const Fraction& other) const
{
return Fraction(numerator * other.denominator + other.numerator * denominator,
denominator * other.denominator);
}
// multiply
Fraction operator*(const Fraction& other) const
{
return Fraction(numerator * other.numerator,
denominator * other.denominator);
}
// divide
Fraction operator/(const Fraction& other) const
{
return Fraction(numerator * other.denominator,
denominator * other.numerator);
// note: I don't attempt to reduce the fraction
}
// for std::sort
bool operator<(const Fraction& other) const
{
return numerator * other.denominator < denominator * other.numerator;
}
// for std::unique
bool operator==(const Fraction& other) const
{
return numerator * other.denominator == denominator * other.numerator;
}
// both might have a negative sign
int numerator;
int denominator;
};
// return all rational numbers that can be produced by the sequence of digits
std::vector<Fraction> search(const std::string& digits)
{
// if no operations are applied, then all digits might be a single number
std::vector<Fraction> result = { Fraction(std::stod(digits)) };
// split digits into two parts and apply an operation on them
for (size_t split = 1; split < digits.size(); split++)
{
auto left = digits.substr(0, split);
auto right = digits.substr(split);
// recursively find all fractions that can be created with these parts
auto leftFractions = search(left);
auto rightFractions = search(right);
// merge both with + - * /
for (auto x : leftFractions)
for (auto y : rightFractions)
{
// add
result.push_back(x + y);
// subtract: not really implemented, just negate second number's numerator and then add
result.push_back(x + Fraction(-y.numerator, y.denominator));
// multiply
result.push_back(x * y);
// divide: disallow division by zero
if (y.numerator != 0)
result.push_back(x / y);
}
}
// prune redundant values (makes the code about 10x faster !)
if (result.size() > 1)
{
std::sort(result.begin(), result.end());
auto last = std::unique(result.begin(), result.end());
result.erase(last, result.end());
}
return result;
}
int main()
{
unsigned int lastDigit = 9;
std::cin >> lastDigit;
// create a string with all digits in ascending order (from 1 to lastDigit)
std::string digits = "123456789";
digits = digits.substr(0, lastDigit);
// find all possible fractions
auto fractions = search(digits);
// all found values
std::vector<int> found;
// extract all integers from these fractions
for (auto current: fractions)
{
// remove negative sign from denominator
if (current.denominator < 0)
{
current.numerator *= -1;
current.denominator *= -1;
}
// fraction must be positive
if (current.numerator <= 0)
continue;
// numerator must be a multiple of its denominator (=> fraction must be an integer)
if (current.numerator % current.denominator == 0)
found.push_back(current.numerator / current.denominator);
}
// remove duplicates
std::sort(found.begin(), found.end());
auto last = std::unique(found.begin(), found.end());
found.erase(last, found.end());
// add all
unsigned long long sum = 0;
for (auto x : found)
sum += x;
// show result
std::cout << sum << std::endl;
return 0;
}