-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0266.cpp
191 lines (174 loc) · 6.58 KB
/
euler-0266.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
// ////////////////////////////////////////////////////////
// # Title
// Pseudo Square Root
//
// # URL
// https://projecteuler.net/problem=266
// http://euler.stephan-brumme.com/266/
//
// # Problem
// The divisors of 12 are: 1,2,3,4,6 and 12.
// The largest divisor of 12 that does not exceed the square root of 12 is 3.
// We shall call the largest divisor of an integer n that does not exceed the square root of n the pseudo square root (PSR) of n.
// It can be seen that PSR(3102)=47.
//
// Let p be the product of the primes below 190.
// Find PSR(p) mod `10^16`.
//
// # Solved by
// Stephan Brumme
// July 2017
//
// # Algorithm
// The product of all primes below 190 is `2 * 3 * 5 * 7 * ... * 181 = 5397346292805549782720214077673687806275517530364350655459511599582614290`.
// That number is obviously too large for my poor C++ compiler ... but its logarithm isn't:
// `log(2) + log(3) + log(5) + ... + log(181) = log(53973462...2614290) approx 167.472`
//
// My program looks for an optimal subsets of those primes where
// `log(p_1) + log(p_2) + ... + log(p_n) approx 167.472 / 2 approx 83.736 = ` (because `log(sqrt{x}) = log(x) / 2`)
//
// There are `2^42 approx 4.4 * 10^12` subsets. And again, I have a number that is too large for my computer ...
// But there is hope - I split those 42 primes into two equally-sized sets:
// the container ''left'' will be "responsible" for the first 21 primes, and ''right'' will control the next 21 primes.
//
// Now there are `2^21 approx 2.1 million` subsets of each ''left'' and ''right''.
// For each of those subsets I compute the logarithm of the product of its primes and a bitmask that indicates which primes were used.
// If the n-th bit is set the n-th prime was used (that's the case for ''left'') or the (n+21)-th prime was used (''right'').
//
// For each value of ''left'' I need to find the largest value of ''right'' such that their sum doesn't exceed 83.736 (''logRoot'').
// ''std::upper_bound'' can perform this task very fast if the input data is sorted (but it returns an iterator that is "one step too far").
//
// Until now, all computations were based on logarithms. I could try `e^{best sum}` but rounding issues produce only garbage.
// That's why I have to look at the bitmasks of the best combination of values from ''left'' and ''right''.
//
// I multiply all used primes according to ''leftMask'' and ''rightMask'' and repeatedly apply modulo `10^16`.
//
// # Note
// Programming languages with proper support for large number probably don't need to deal with logarithms.
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
// all primes below 190
std::vector<unsigned int> primes =
{
2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
179, 181
};
// store a subsets logarithm and a bitmask of used primes
struct LogAndBitmask
{
// logarithm of product of used primes
double logarithm;
// bitmask of used primes
unsigned int bitmask;
// for std::sort and std::upper_bound
bool operator<(const LogAndBitmask& other) const
{
return logarithm < other.logarithm;
}
};
int main()
{
unsigned int maxPrime = 190;
std::cin >> maxPrime;
// keep only relevant primes
while (primes.back() > maxPrime)
primes.pop_back();
// compute logarithm of all primes
double logProduct = 0;
std::vector<double> logPrimes;
for (auto p : primes)
{
auto current = log(p);
logPrimes.push_back(current);
logProduct += current;
}
// log(sqrt(x)) = log(x) / 2
double logRoot = logProduct / 2;
// subdivides primes into two equally-sized sets (21 elements each)
const auto half = primes.size() / 2;
// generate all subsets of the lower half of the primes (left)
// and all subsets of the upper half of the primes (right)
// key is the logarithm of product of the used primes, value is the bitmask
// (if n-th bit is set, then the n-th prime is used)
std::vector<LogAndBitmask> right;
for (unsigned int bitmask = 0; bitmask < (1ULL << half); bitmask++)
{
// find logarithm for the upper half of primes
double logRight = 0;
for (unsigned int pos = 0; pos < half; pos++)
if ((bitmask & (1 << pos)) != 0)
logRight += logPrimes[pos + half];
// store logarithms and their generating bitmasks
if (logRight <= logRoot) // skip a few of the very large products
right.push_back({ logRight, bitmask});
}
// sort container / required for fast binary search (the algorithm behind std::upper_bound)
std::sort(right.begin(), right.end());
// find "best" combination of left and right:
// for each value of "left" look for best match in "right"
// keep the highest sum which doesn't exceed logRoot
double best = 0;
unsigned int leftMask = 0; // optimal bitmask for lower primes
unsigned int rightMask = 0; // optimal bitmask for larger primes
for (unsigned int bitmask = 0; bitmask < (1ULL << half); bitmask++)
{
// find logarithm for the same bitmask of the lower half of primes
double logLeft = 0;
for (unsigned int pos = 0; pos < half; pos++)
if ((bitmask & (1 << pos)) != 0)
logLeft += logPrimes[pos];
// how much should come from the bigger primes ?
LogAndBitmask missing = { logRoot - logLeft, 0 }; // bitmask doesn't matter, set to zero
// find best match
auto iteLogRight = std::upper_bound(right.begin(), right.end(), missing);
// ... which will slightly overshoot, therefore go back one step
iteLogRight--;
auto logRight = iteLogRight->logarithm;
// higher than before ?
if (best < logLeft + logRight)
{
best = logLeft + logRight;
// store bitmasks
leftMask = bitmask;
rightMask = iteLogRight->bitmask;
}
}
// last 16 digits of the product
unsigned long long result = 1;
// multiply all relevant primes (according to leftMask and rightMask)
const auto Modulo = 10000000000000000ULL;
// index of current prime
unsigned int currentPrime = 0;
// the first 21 primes ...
for (; currentPrime < half; currentPrime++)
{
// use that prime ?
if ((leftMask & 1) != 0)
{
result *= primes[currentPrime];
result %= Modulo;
}
// next bit
leftMask >>= 1;
}
// ... and the same for the next 21 primes
for (; currentPrime < primes.size(); currentPrime++)
{
// use that prime ?
if ((rightMask & 1) != 0)
{
result *= primes[currentPrime];
result %= Modulo;
}
// next bit
rightMask >>= 1;
}
// print result
std::cout << result << std::endl;
return 0;
}