-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0273.cpp
208 lines (190 loc) · 7.57 KB
/
euler-0273.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// ////////////////////////////////////////////////////////
// # Title
// Sum of Squares
//
// # URL
// https://projecteuler.net/problem=273
// http://euler.stephan-brumme.com/273/
//
// # Problem
// Consider equations of the form: `a^2 + b^2 = N`, `0 <= a <= b`, `a`, `b` and `N` integer.
//
// For `N=65` there are two solutions:
// `a=1`, `b=8` and `a=4`, `b=7`.
//
// We call `S(N)` the sum of the values of `a` of all solutions of `a^2 + b^2 = N`, `0 <= a <= b`, `a`, `b` and `N` integer.
//
// Thus `S(65) = 1 + 4 = 5`.
// Find `sum{S(N)}`, for all squarefree `N` only divisible by primes of the form `4k+1` with `4k+1 < 150`.
//
// # Solved by
// Stephan Brumme
// September 2017
//
// # Algorithm
// Fermat found that an odd prime is expressible as (see https://en.wikipedia.org/wiki/Fermat%27s_theorem_on_sums_of_two_squares ):
// (1) `p = x^2 + y^2`
// only if `p == 1 (mod 4)`. Written in a different way: each prime which can be represented as `4k+1` has a unique solution `x^2 + y^2`.
//
// Honestly, I took me a few seconds to understand the very last sentence:
// - I have to find all primes below 150 where `4k+1`
// - `N` stands for any product of the primes (where each prime is used at most once)
// - e.g. `(4 * 1 + 1) * (4 * 3 + 1) = 5 * 13 = 65`
//
// My first step is to find all primes `p = 4 * k + 1 < 150`. There are only 16 matching numbers: 5, 13, 17, ..., 149.
// The function ''is4n1Prime()'' returns true if `p` is such a prime.
//
// ''processPrime()'' is almost identical to the brute-force algorithm and finds the unique representation of a prime by two squares.
// It's superfast because the relevant primes are so small.
//
// If `p_1 = a^2 + b^2` and `p_2 = c^2 + d^2` then the product of those two primes is:
// (2) `p_1 p_2 = (a^2 + b^2) * (c^2 + d^2)`
// (3) `p_1 p_2 = a^2 c^2 + a^2 d^2 + b^2 c^2 + b^2 d^2`
//
// Adding and subtracting `2abcd` as well as rearranging the terms:
// (4a) `p_1 p_2 = a^2 c^2 + 2abcd + b^2 d^2 + a^2 d^2 - 2abcd + b^2 c^2`
// (5a) `p_1 p_2 = (ac + bd)^2 + (ad - bc)^2`
//
// And a second variation:
// (4b) `p_1 p_2 = a^2 c^2 - 2abcd + b^2 d^2 + a^2 d^2 + 2abcd + b^2 c^2`
// (5b) `p_1 p_2 = (ac - bd)^2 + (ad + bc)^2`
// This is known as the Brahmagupta-Fibonacci identity (see https://en.wikipedia.org/wiki/Brahmagupta%E2%80%93Fibonacci_identity )
//
// Now I know that each product of two primes has the solutions
// (6) `p_1 p_2 = x^2 + y^2`
// (7a) `x_1 = ac + bd` and `y_1 = | ad - bc |`
// (7b) `x_2 = | ac - bd |` and `y_2 = ad - bc`
//
// A product of three primes `p_1 p_2 p_3` can be solved by solving the product `p_1 p_2` and then using both solutions together with `p_3`.
// In the same way, any product of `j` primes can be solved by solving the case of `j-1` primes first and then including the next prime.
//
// The function ''search()'' combines a bunch of solutions with one more prime in a recursive manner.
// To simplify finding the smaller square it always ensure that the first square is smaller than the second.
//
// I had to spent a few minutes thinking of a proper initial input value for ''search()'' and came up with ''Seed = { 1, 0 }'':
// - combining any prime's sum of square with this constant returns the same sum of squares
// - there is only one solution, not two, when doing so
// - it's possible that my algorithm combines zero primes ==> ''Seed'' is part of the result set and has to be ignored
//
// # Note
// To my surprise, my code didn't work because ''std::abs'' is apparently not defined for ''long long'' in my compiler's standard library.
// The simple template ''abs'' is a no-brainer - but I'm still confused by the improper implementation of ''std::abs''.
//
// My original code contained a few lines of debugging output. For example, it printed the product of primes currently analyzed.
// Those numbers easily exceed 64 bits (but 128 bits would be sufficient). Therefore my 64 bit output was wrong and I thought I had a serious bug in my algorithm.
//
// # Alternative
// A smarter implementation can get rid of the "temporary" container ''solutions''.
#include <iostream>
#include <vector>
#include <algorithm>
// store a and b for n = a^2 + b^2 where a<b
typedef std::pair<long long, long long> SumSquares;
// initial dummy element
const SumSquares Seed({ 1, 0 });
// unique representations of primes p = 4n+1
std::vector<SumSquares> primes;
// enumerate all representations and return sum of the smaller part
unsigned int bruteForce(unsigned int n)
{
unsigned int result = 0;
for (unsigned int b = 1; b*b < n; b++)
for (unsigned int a = 1; a < b; a++)
if (a*a + b*b == n)
result += a;
return result;
}
// return true, if p = 4n+1 and p is prime
bool is4n1Prime(unsigned int p)
{
// https://en.wikipedia.org/wiki/Fermat%27s_theorem_on_sums_of_two_squares
// must be 4n+1
if (p % 4 != 1)
return false;
// and prime
for (auto i = 3; i*i <= p; i += 2)
if (p % i == 0)
return false;
// all tests passed (reject p = 1)
return p > 1;
}
// there is a unique sum a^2 + b^2 for each prime p = 4n+1
SumSquares processPrime(unsigned int prime)
{
// same idea as bruteForce() but stop after the first solution was found
for (unsigned int b = 1; b*b < prime; b++)
for (unsigned int a = 1; a < b; a++)
if (a*a + b*b == prime)
return { a, b };
return { 0, 0 }; // never reached
}
// abs isn't available for long long (only smaller int)
template <typename T>
T abs(T a)
{
// actually C++11's std::abs should be able to handle long long values but my compiler fails ... strange !
return a > 0 ? +a : -a;
}
// solve problem: combine each solution of at most index-1 prime with the prime at primes[index]
// return the sum of the smaller primes when finished
unsigned long long search(const std::vector<SumSquares>& solutions = { Seed }, size_t index = 0)
{
// done ?
if (index == primes.size())
{
unsigned long long sum = 0;
// add the smaller squares
for (auto s : solutions)
if (s != Seed)
sum += s.first;
// finally ...
return sum;
}
// combine all previous solutions with the current prime
auto current = primes[index];
std::vector<SumSquares> next;
next.reserve(solutions.size() * 2);
for (auto s : solutions)
{
// https://en.wikipedia.org/wiki/Brahmagupta%E2%80%93Fibonacci_identity
// (ac + bd)^2 + (ad - bc)^2
auto x = s.first * current.first + s.second * current.second;
auto y = abs(s.first * current.second - s.second * current.first);
// ensure that the first number is smaller than the second
if (x > y)
std::swap(x, y);
// found a new representation
next.push_back({ x, y });
// if s is the See then (x,y) is identical in both equations
if (s == Seed)
continue;
// now the same procedure but with swapped signs in the computation of x and y
// (ac - bd)^2 + (ad + bc)^2
x = abs(s.first * current.first - s.second * current.second);
y = s.first * current.second + s.second * current.first;
// ensure that the first number is smaller than the second
if (x > y)
std::swap(x, y);
// found a new representation
next.push_back({ x, y });
}
// without the current prime
auto without = search(solutions, index + 1);
// with the current prime
auto with = search(next, index + 1);
return with + without;
}
int main()
{
unsigned int limit = 150;
std::cin >> limit;
// analyze a single number
//std::cout << bruteForce(65) << std::endl;
// find all relevant primes
for (unsigned int i = 5; i <= limit; i += 4)
if (is4n1Prime(i))
primes.push_back(processPrime(i));
// and here we go !
std::cout << search() << std::endl;
return 0;
}