-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0279.cpp
218 lines (192 loc) · 6.09 KB
/
euler-0279.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
// ////////////////////////////////////////////////////////
// # Title
// Triangles with integral sides and an integral angle
//
// # URL
// https://projecteuler.net/problem=279
// http://euler.stephan-brumme.com/279/
//
// # Problem
// How many triangles are there with integral sides, at least one integral angle (measured in degrees), and a perimeter that does not exceed `10^8` ?
//
// # Solved by
// Stephan Brumme
// December 2017
//
// # Algorithm
// Niven's theorem (see https://en.wikipedia.org/wiki/Niven's_theorem ) states that for rational angles `sin(alpha)` the only rational values are `\{ 0, +1/2, -1/2, +1, -1 \}`.
// Since `sin(90° + alpha) = cos(alpha)` this theorem can be applied to `cos(alpha)`, too.
//
// Thus only 3 angles can be part of a valid triangle:
// (1) `cos( 60°) = +1/2`
// (2) `cos( 90°) = 0`
// (3) `cos(120°) = -1/2`
//
// Each triangle satisfies (see https://en.wikipedia.org/wiki/Law_of_cosines ):
// (4) `c^2 = a^2 + b^2 - 2ab cos(gamma)`
//
// If `gamma = 60°` then (4) can be simplified to
// (5) `c^2 = a^2 + b^2 - ab`
//
// If `gamma = 90°` then (4) can be simplified to
// (6) `c^2 = a^2 + b^2`
//
// If `gamma = 120°` then (4) can be simplified to
// (7) `c^2 = a^2 + b^2 + ab`.
//
// These equations have their own Wikipedia pages, too: https://en.wikipedia.org/wiki/Eisenstein_triple and https://en.wikipedia.org/wiki/Pythagorean_triple .
// But more interesting is https://en.wikipedia.org/wiki/Integer_triangle which gives away nice formulas to generate all such triangles.
// The formulas need two variables `m` and `n` where `0 < n < m`.
//
// The case `cos(60°)` boils down to:
// `a = m^2 - mn + n^2`
// `b = 2mn - n^2`
// `c = m^2 - n^2`
//
// I solved `cos(90°)` in problem 75 (see https://en.wikipedia.org/wiki/Pythagorean_triple ):
// `a = m^2 - n^2`
// `b = 2mn`
// `c = m^2 + n^2`
//
// And finally `cos(120°)`:
// `a = m^2 + mn + n^2`
// `b = 2mn + n^2`
// `c = m^2 - n^2`
//
// The triples `(a,b,c)` are not necessarily basic triples - but their greatest common divisor is always either 1 or 3.
// Now I have all the tools to generate all basic triples. Those basic triples and all their multiples are solutions.
// There are `10^8 / perimeter` multiples of each basic triples which satisfy the condition that the perimeter must not exceed `10^8`.
//
// The functions ''search60()'', ''search90()'' and ''search120()'' implement each set of equations for `60°`, `90°` and `120°`.
//
// # Note
// Fortunately I didn't find a triangle with angles `60° + 90° + 30°` and integer sides.
// If there were any, I would have needed to avoid double-counting (as they would be counted as `60°` and `90°` separately).
//
// Since today is my lucky day, I added a few OpenMP pragmas which reduce the execution time from 4 to less than 1 second on my computer (enable ''#define PARALLEL'').
#include <iostream>
#include <cmath>
#define PARALLEL
const auto numCores = 8; // 4 = four cores, 8 = eight cores, etc.
// ---------- code copied from my toolbox ----------
// find greatest common divisor
template <typename T>
T gcd(T a, T b)
{
while (a != 0)
{
T c = a;
a = b % a;
b = c;
}
return b;
}
// ---------- problem-specific code ----------
// 90 degrees (based on code from problem 75)
unsigned int search90(unsigned int limit)
{
unsigned int result = 0;
unsigned int last = sqrt(limit / 2);
#ifdef PARALLEL
#pragma omp parallel for num_threads(numCores) reduction(+:result) schedule(dynamic)
#endif
for (unsigned int m = 2; m < last; m++)
for (unsigned int n = (m & 1) + 1; n < m; n += 2) // m + n must be odd
{
// only valid m and n
if (gcd(m, n) != 1)
continue;
// compute basic triplet
auto a = m*m - n*n;
auto b = 2*m*n;
auto c = m*m + n*n;
// too large ?
auto sum = a + b + c;
if (sum > limit)
break;
// all its multiples are valid, too
auto numMultiples = limit / sum;
result += numMultiples;
}
return result;
}
// 60 degrees
unsigned int search60(unsigned int limit)
{
unsigned int last = sqrt(limit*3/2);
unsigned int result = 0;
#ifdef PARALLEL
#pragma omp parallel for num_threads(numCores) reduction(+:result) schedule(dynamic)
#endif
for (unsigned int m = 2; m < last; m++)
for (unsigned int n = 1; 2*n <= m; n++)
{
// only valid m and n
if (gcd(m, n) != 1)
continue;
// compute next triplet
auto a = m*m - m*n + n*n;
auto b = 2*m*n - n*n;
auto c = m*m - n*n;
auto sum = a + b + c;
// divide by their greatest common divisor to get the basic triplet
// gcd(a,b,c) is either 1 or 3
if (a % 3 == 0 && b % 3 == 0 && c % 3 == 0)
sum /= 3;
if (sum > 3*limit)
break;
if (sum <= limit)
{
// all its multiples are valid, too
auto numMultiples = limit / sum;
result += numMultiples;
}
}
return result;
}
// 120 degrees
unsigned int search120(unsigned int limit)
{
unsigned int result = 0;
unsigned int last = sqrt(limit*3/2);
#ifdef PARALLEL
#pragma omp parallel for num_threads(numCores) reduction(+:result) schedule(dynamic)
#endif
for (unsigned int m = 2; m < last; m++)
for (unsigned int n = 1; 2*n <= m; n++)
{
// only valid m and n
if (gcd(m, n) != 1)
continue;
// compute next triplet
auto a = m*m + m*n + n*n;
auto b = 2*m*n + n*n;
auto c = m*m - n*n;
// skip mirrored triangles
if (b > c)
break;
// note: a is always the longest side
auto sum = a + b + c;
// divide by their greatest common divisor to get the basic triplet
// gcd(a,b,c) is either 1 or 3
if (a % 3 == 0 && b % 3 == 0 && c % 3 == 0)
sum /= 3;
if (sum > 3*limit)
break;
// all its multiples are valid, too
auto numMultiples = limit / sum;
result += numMultiples;
}
return result;
}
int main()
{
unsigned int limit = 100000000;
std::cin >> limit;
auto num60 = search60 (limit);
auto num90 = search90 (limit);
auto num120 = search120(limit);
auto result = num60 + num90 + num120;
std::cout << result << std::endl;
return 0;
}