-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0284.cpp
450 lines (393 loc) · 14.7 KB
/
euler-0284.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
// ////////////////////////////////////////////////////////
// # Title
// Steady Squares
//
// # URL
// https://projecteuler.net/problem=284
// http://euler.stephan-brumme.com/284/
//
// # Problem
// The 3-digit number 376 in the decimal numbering system is an example of numbers with the special property that its square ends with the same digits: `376^2 = 141376`.
// Let's call a number with this property a steady square.
//
// Steady squares can also be observed in other numbering systems. In the base 14 numbering system, the 3-digit number c37 is also a steady square: `c37^2 = aa0c37`,
// and the sum of its digits is c+3+7=18 in the same numbering system.
// The letters a, b, c and d are used for the 10, 11, 12 and 13 digits respectively, in a manner similar to the hexadecimal numbering system.
//
// For `1 <= n <= 9`, the sum of the digits of all the `n`-digit steady squares in the base 14 numbering system is 2d8 (582 decimal).
// Steady squares with leading 0's are not allowed.
//
// Find the sum of the digits of all the n-digit steady squares in the base 14 numbering system for
// `1 <= n <= 10000` (decimal) and give your answer in the base 14 system using lower case letters where necessary.
//
// # Solved by
// Stephan Brumme
// October 2017
//
// # Algorithm
// This problem bugged me for a while ... the amount of code written for my solution was astonishing (and only a fraction of it survived ...).
//
// Nevertheless, here's how I did it:
// Within a few seconds I found exactly three single steady digits:
// `1^2 mod 14 = 1`
// `7^2 mod 14 = 49 mod 14 == 7`
// `8^2 mod 14 = 64 mod 14 == 8`
// (zero was disallowed by the problem statement)
//
// Continuing with two digits caused a problem:
// I couldn't find a digit that can be prepended to 1 - but there are such digits for 7 and 8.
// As it turns out, I can "extend" 7 and 8 basically to infinitely long steady squares.
// And there is always exactly one digit I can prepend to a steady square such that it becomes a larger steady square.
// The ''BigNum'' class from my [toolbox](../toolbox/) already supported different bases.
// Adding a ''toString()'' method for base 14 was straightforward.
// Then I wrote ''isSteady()'': it multiplies the number with itself and in each step checks whether the last digits remain unchanged.
//
// The obvious brute force algorithm is as follows:
// - prepend every possible digit `d = 0,1,2,3,...9,a,...` to a steady square `s` of length `m` so that `s' = d * 14^m + s`
// - compute its square `t = s' * s'`
// - if the last `m+1` digits of `t` are identical to `s'` then I found the correct digit
// It works pretty well for up to 100 digits.
//
// The Wikipedia page https://en.wikipedia.org/wiki/Automorphic_number focusses on an algorithm based on the Chinese Remainder Theorem.
// And I don't really like it ... so it looked at the output and saw that there is a certain relationship between the first steady squares of 7:
// `s_1 = 7_14 = 7_10`
// `s_2 = 37_14 = 49_10 = 7^2`
// `s_3 = c37_14 = 2401_10 = 49^2 = 7^4`
// `s_4 = 0c37_14 = 2401_10 = 49^2 = 7^4`
// `s_5 = a0c37_14 = 386561_10 = 7^5 * 23`
// Unfortunately it doesn't work for `s_4` and `s_5` anymore, so I stopped working and solved other Project Euler problems.
// Problem 455 isn't related to the current problem but it reminded my that modulo often works in strange ways.
// And indeed:
// `s_4 = s^2_3 mod 14^4 = 2401^2 mod 14^4 = 5764801 mod 38416 == 2401`
// `s_5 = s^2_4 mod 14^5 = 2401^2 mod 14^5 = 2401 mod 537824 == 386561`
// So I have a simple way to generate all digits step-by-step.
//
// My multiplication code was extremely slow: the square of a number with `m` digits has `2m` digits.
// But I only need `m + 1` of those - so I wrote ''multiplyLow()'' which stops after enough digits were computed and discards the rest.
//
// The Wikipedia mentions a smart way to generate the second automorphic number: "the sum of two automorphic numbers is `10^k + 1`".
// If I have one automorphic number `s` then the other one is `S = 10^k + 1 - s`. My ''findOther()'' function does exactly that.
// The solution for 1000 digits takes half a second and the solution for 10000 digits is found after about 8 minutes.
//
// But another formula on the Wikipedia page caught my attention (I didn't realize its importance when I read it the first time):
// `n' = (3n^2 - 2n^3) mod 10^{2k}`
// Starting with an automorphic number `n` I get a new automorphic number `n'` that has __twice__ as many digits.
// Even though this formula is intended for base 10 numbers it still works for base 14 (I have no idea about other bases).
//
// My ''BigNum'' class supports only positive numbers and `3n^2 - 2n^3` is always negative for `n > 1`.
// So I had to rewrite the formula using the relationship `-a mod b = (b-a) mod b`:
// `n' = (3n^2 - 2n^3) mod 10^{2k}`
// `n' = -(2n^3 - 3n^2) mod 10^{2k}`
// `n' = (10^{2k} - (2n^3 - 3n^2)) mod 10^{2k}`
//
// See my ''fastDoubling()'' function ==> it finishes after 1.1 seconds.
//
// The final step is to compute the digit sum of my steady squares:
// - the last digit is part of all steady squares, that means it appears 10000 times
// - the second-to-last digit is part of all steady squares, except the steady square with only one digit, that means it appears 9999 times
// - ... and so on ...
// - but any steady square with a leading zero must be discarded ==> I subtract all digits in a simple loop (looks slow, but it surprisingly fast)
//
// # Note
// This solution currently shares the "first place" of most code I needed to solve a problem, see my [ranking](../performance/#codemetrics).
// Despite all the code (and time) needed to crack the problem, I felt that this was a really nice one.
//
// # Alternative
// Dedicated large integer library such as GMP are much faster than my simple ''BigNum'' class.
// With a clever use of residues you can get away with simple integer arithmetic as well and solve the problem in less than 0.1 seconds.
#include <iostream>
#include <vector>
#include <string>
// ---------- code taken from my toolbox, with a few modifications / extensions, see explanations above ----------
// store single digits with lowest digits first
// e.g. 1024 (in base 14) is stored as { 4,2,0,1 }
// only non-negative numbers supported
struct BigNum : public std::vector<unsigned char>
{
static const unsigned int MaxDigit = 14;
// store a non-negative number
BigNum(unsigned int x = 0)
{
do
{
push_back(x % MaxDigit);
x /= MaxDigit;
} while (x > 0);
}
// convert from base 14 to string
std::string toString() const
{
const char digits[] = "0123456789abcd";
std::string result;
for (auto x : *this)
{
// process a bucket
for (unsigned int shift = 1; shift < MaxDigit; shift *= MaxDigit)
{
auto digit = (x / shift) % MaxDigit;
result.insert(0, 1, digits[digit]);
}
}
// remove leading zeros
while (result.size() > 1 && result.front() == '0')
result.erase(0, 1);
return result;
}
// add two big numbers
BigNum operator+(const BigNum& other) const
{
auto result = *this;
// add in-place, make sure it's big enough
if (result.size() < other.size())
result.resize(other.size(), 0);
unsigned int carry = 0;
for (size_t i = 0; i < result.size(); i++)
{
carry += result[i];
if (i < other.size())
carry += other[i];
else
if (carry == 0)
return result;
if (carry < MaxDigit)
{
// no overflow
result[i] = carry;
carry = 0;
}
else
{
// yes, we have an overflow
result[i] = carry - MaxDigit;
carry = 1;
}
}
if (carry > 0)
result.push_back(carry);
return result;
}
// multiply a big number by an integer
BigNum operator*(unsigned int factor) const
{
// faster multiplication possible ?
if (factor == 0)
return 0;
if (factor == 1)
return *this;
if (factor == MaxDigit)
{
if (size() == 1 && operator[](0) == 0)
return 0;
auto result = *this;
result.insert(result.begin(), 0);
return result;
}
unsigned int carry = 0;
auto result = *this;
for (auto& i : result)
{
carry += i * factor;
i = carry % MaxDigit;
carry /= MaxDigit;
}
// store remaining carry in new digits
while (carry > 0)
{
result.push_back(carry % MaxDigit);
carry /= MaxDigit;
}
return std::move(result);
}
// subtract a smaller-or-equal number
BigNum operator-(const BigNum& other) const
{
BigNum result = *this;
int borrow = 0;
for (size_t i = 0; i < result.size(); i++)
{
int diff = (int)result[i] - borrow;
if (i < other.size())
diff -= other[i];
else
if (borrow == 0)
break;
if (diff < 0)
{
borrow = 1;
diff += MaxDigit;
}
else
borrow = 0;
result[i] = diff;
}
// no high zeros
while (result.size() > 1 && result.back() == 0)
result.pop_back();
return result;
}
// multiply two big numbers
BigNum operator*(const BigNum& other) const
{
if (size() < other.size())
return other * *this;
// multiply single digits of "other" with the current object
BigNum result = 0;
for (int i = (int)other.size() - 1; i >= 0; i--)
result = result * MaxDigit + (*this * other[i]);
return std::move(result);
}
// ---------- problem-specific code (still part of BigNum class) ----------
// multiply by a big number and keep only the lowest digits
void multiplyLow(const BigNum& other, size_t numDigits)
{
BigNum result;
result.resize(numDigits, 0);
// multiply single digits of "other" with the current object
unsigned int carry = 0;
for (size_t i = 0; i < other.size() && i < numDigits; i++)
{
carry = 0;
for (size_t j = 0; i + j < numDigits; j++)
{
// multiply two digits (if possible) and add carry
if (j >= size())
carry += result[i + j];
else
carry += result[i + j] + other[i] * operator[](j);
// store lowest digit of product and keep "carrying on" :-)
result[i + j] = carry % MaxDigit;
carry /= MaxDigit;
}
}
*this = std::move(result);
}
// try to find the square and check whether its lower digits remain unchanged
bool isSteady() const
{
// multiply the number with itself and abort as soon as possible
BigNum square = 0;
for (size_t pos = 0; pos < size(); pos++)
{
// multiply with next digit
auto digit = operator[](pos);
if (digit > 0)
{
auto product = *this * digit;
for (size_t appendZeros = 0; appendZeros < pos; appendZeros++)
product.insert(product.begin(), 0);
square = square + product;
}
// mismatch ?
if (digit != square[pos])
return false;
}
// yes, a steady square
return true;
}
};
// ---------- problem-specific code (not part of BigNum class) ----------
// prepend every possible digit until a steady square is fouund
BigNum bruteForce(const BigNum& number)
{
auto next = number;
next.push_back(0);
// prepend a digit (remember: digits are stored in reverse order)
for (unsigned int digit = 0; digit < BigNum::MaxDigit; digit++)
{
next.back() = digit;
// steady ?
if (next.isSteady())
break;
}
return next;
}
// compute steady square where the right-most digits are "number", result has exactly "numDigits" digits
BigNum fastDoubling(const BigNum& number, unsigned int numDigits)
{
// https://en.wikipedia.org/wiki/Automorphic_number
// n' = (3n^2 - 2n^3) mod 14^2k => a negative number, which my simple BigNum class doesn't support yet
// n' = 14^2k - (2n^3 - 3n^2) mod 14^2k
// after each iteration, the number of steady digits will double
auto current = number;
while (current.size() < numDigits)
{
// new number will have twice as many digits
auto twiceDigits = 2 * current.size();
auto square = current * current; // n^2
auto cube = square * current; // n^3
auto diff = cube * 2 - square * 3; // 3n^2 - 2n^3
diff.resize(twiceDigits); // (3n^2 - 2n^3) mod 14^twiceDigits
BigNum largeOne = 0;
largeOne.resize(twiceDigits, 0); // 14*twiceDigits zeros
largeOne.push_back(1); // and prepend a "1" => 14^twiceDigits
current = largeOne - diff; // 14^twiceDigits - (3n^2 - 2n^3) mod 14^twiceDigits
}
// remove superfluous leading digits (current has always 2^iterations digits, e.g. 16384 which will be reduced to 10000)
current.resize(numDigits);
return current;
}
// given an automorphic number, find its sibling
BigNum findOther(const BigNum& number)
{
// eight = (14^maxDigits + 1) - seven
BigNum one0one = 1;
one0one.resize(number.size(), 0);
one0one.push_back(1);
return one0one - number;
}
int main()
{
unsigned int maxDigits = 10000;
std::cin >> maxDigits;
// manually found those two number to be the only steady digits mod 14 (except for 1, see below)
BigNum seven = 7;
BigNum eight = 8;
//#define BRUTEFORCE
#ifdef BRUTEFORCE
// brute-force
for (unsigned int i = 2; i < maxDigits; i++)
{
seven = bruteForce(seven);
eight = bruteForce(eight);
}
#endif
//#define POWER
#ifdef POWER
for (unsigned int numDigits = 2; numDigits <= maxDigits; numDigits++)
{
// seven = seven * seven, reduced to numDigits
seven.multiplyLow(seven, numDigits);
//std::cout << numDigits << " " << std::flush;
}
eight = findOther(seven);
#endif
#define DOUBLING
#ifdef DOUBLING
// use equation (3n^2 - 2n^3) mod 14^k until I have 10000 digits
seven = fastDoubling(7, maxDigits);
eight = findOther(seven); // faster than eight = fastDoubling(8, maxDigits);
#endif
// now I have the 10000 steady digits ending with 7 and 8, let's find their digit sum !
// 1 is a steady digit, too, but a strange special case: 1^2 % 14 = 1
unsigned int sum = 1;
// prepending any digit to 1 doesn't produce a steady square
// okay, let's proceed with ...7 and ...8
for (unsigned int i = 0; i < maxDigits; i++)
{
// last digit appears in 10000 steady squares, next to last in 9999 steady squares, ...
auto howOften = maxDigits - i;
sum += howOften * seven[i];
sum += howOften * eight[i];
// but don't count those numbers having a leading zero
if (seven[i] == 0)
for (unsigned int j = 0; j < i; j++) // could be more efficient ... but it's still too fast to be measurable
sum -= seven[j];
if (eight[i] == 0)
for (unsigned int j = 0; j < i; j++)
sum -= eight[j];
}
// print digit sum in base 14
BigNum sumBase14 = sum;
std::cout << sumBase14.toString() << std::endl;
return 0;
}