-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0288.cpp
143 lines (129 loc) · 4.82 KB
/
euler-0288.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
// ////////////////////////////////////////////////////////
// # Title
// An enormous factorial
//
// # URL
// https://projecteuler.net/problem=288
// http://euler.stephan-brumme.com/288/
//
// # Problem
// For any prime `p` the number `N(p,q)` is defined by `N(p,q) = sum_{n=0 ... q}{T_n * p^n}`
// with `T_n` generated by the following random number generator:
//
// `S_0 = 290797`
// `S_{n+1} = S_n^2 mod 50515093`
// `T_n = S_n mod p`
//
// Let `Nfac(p,q)` be the factorial of `N(p,q)`.
// Let `NF(p,q)` be the number of factors `p` in `Nfac(p,q)`.
//
// You are given that `NF(3,10000) mod 3^20 = 624955285`.
//
// Find `NF(61, 10^7) mod 61^10`
//
// # Solved by
// Stephan Brumme
// October 2017
//
// # Algorithm
// I started with the easy part:
// The function ''countFactors()'' returns the exponent of a given prime in a factorial's prime factorization.
// It relies on Legendre's formula which I already used for other problems, too ( see https://en.wikipedia.org/wiki/Legendre%27s_formula ).
//
// The pseudo-random number generator wasn't hard as well. I wrote that stuff when I saw the problem for the first time but then I was stuck and continued with other problems.
// Upen revisiting this problem I made the crucial observation that the result has to be printed `mod 61^10` ==> and 61 is the same prime used for `NF(61, 10^7)`.
// (the same hold true for the example `NF(3, 10000) mod 3^20`).
//
// Therefore the result depends on three parameters:
// - a prime `p = 61`
// - a positive number `q = 10^7`
// - an exponent of the modulus `exponent = 10`
//
// The term `p^n` in the formula `N(p,q) = sum_{n=0 ... q}{T_n * p^n}` will be `p=61` and `n=0,1,...` therefore `61^0 = 1`, `61^1 = 61`, `61^2 = 3721`, ...
// It can't exceed `61^10` because of the `mod 61^10` part in the final formula. The variable ''maxPower'' will be 1, 61, 3721, ... until it reaches `61^10` and remains at the level.
//
// There are only 61 possible values for `T_n = S_n mod 61`. That means that the number of different `T_n * p^n` is very small (in fact it's 71).
// Caching those results of ''countFactors(t * p^n)'' let's the runtime of the program drop from 2.6 to 0.35 seconds.
//
// # Note
// `T_n` is at most 60, so `max(T_n * 61^10) = 60 * 61^10 approx 4.28 * 10^19` is the largest value I will encounter in my computations.
// Unfortunately this value is beyond the range of 64 bit integers (it requires 66 bits) and I needed to switch to GCC's 128 bit extension.
// Therefore this code doesn't compile with Visual C++ etc.
//
// I didn't like this problem because I spent too much time "discovering" that I need 128 bit arithmetic.
#include <iostream>
#include <vector>
#include <unordered_map>
// I had overflows with 64 bit arithmetic, so I switched to GCC's 128 bit extension
typedef __int128 Number;
// compute the exponent of prime in the factorization of f!
unsigned long long countFactors(Number f, unsigned int prime)
{
// Legendre's formula, https://en.wikipedia.org/wiki/Legendre%27s_formula
unsigned long long result = 0;
Number power = prime;
while (power <= f)
{
result += f / power;
power *= prime;
}
return result;
}
// variables of the problem statement:
// p = prime = 61
// q = iterations = 10^7
// moduloExponent = 10 (because of 61^10)
unsigned long long solve(unsigned int prime, unsigned int iterations, unsigned int exponent)
{
// compute prime^moduloExponent => 61^10
unsigned long long modulo = 1;
for (unsigned int i = 1; i <= exponent; i++)
modulo *= prime;
// will be 61^i => 61^0, 61^1, 61^2, ..., 61^10 and keep it at 61^10
Number maxPower = 1;
// seed of pseudo-random number generator
unsigned long long s = 290797;
unsigned long long result = 0;
for (unsigned int i = 0; i <= iterations; i++)
{
// T(i, 61) * 61^i
auto t = s % prime;
// => but 61^i limited to 61^10
auto product = t * maxPower;
// I observed only 71 different products (in 1000000 iterations !), let's cache them
static std::unordered_map<Number, unsigned long long> cache;
auto lookup = cache.find(product);
if (lookup == cache.end())
{
// new, unknown parameters, must call countFactors()
auto current = countFactors(product, prime);
// cache the value
cache[product] = current;
// add it to the result, too
result += current;
}
else
{
// add looked up value
result += lookup->second;
}
// keep under 61^10
result %= modulo;
// 61^i => 61^(i+1), but limit to 61^10
if (maxPower < modulo)
maxPower *= prime;
// next random number
s *= s;
s %= 50515093;
}
return result;
}
int main()
{
unsigned int prime = 61;
unsigned int iterations = 10000000;
unsigned int exponent = 10;
std::cin >> prime >> iterations >> exponent;
std::cout << solve(prime, iterations, exponent) << std::endl;
return 0;
}