-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0313.cpp
338 lines (304 loc) · 10.4 KB
/
euler-0313.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// ////////////////////////////////////////////////////////
// # Title
// Sliding game
//
// # URL
// https://projecteuler.net/problem=313
// http://euler.stephan-brumme.com/313/
//
// # Problem
// In a sliding game a counter may slide horizontally or vertically into an empty space.
// The objective of the game is to move the red counter from the top left corner of a grid to the bottom right corner;
// the space always starts in the bottom right corner.
// For example, the following sequence of pictures show how the game can be completed in five moves on a 2 by 2 grid.
//
// 
//
// Let `S(m,n)` represent the minimum number of moves to complete the game on an `m` by `n` grid. For example, it can be verified that `S(5,4) = 25`.
//
// 
//
// There are exactly 5482 grids for which `S(m,n) = p^2`, where `p < 100` is prime.
//
// How many grids does `S(m,n) = p^2`, where `p < 10^6` is prime?
//
// # Solved by
// Stephan Brumme
// September 2017
//
// # Algorithm
// Wow, I needed quite some time to solve this apparently easy problem (difficulty rated at just 30% by Project Euler) ...
// These three steps were taken:
// 1. write a simple brute-force solution for very small `m` and `n`
// 2. deduce a slightly smarter version for `S(m,n) = p^2` where `p < 100`
// 3. find the the fast formula for `p < 10^6`
//
// ''bruteForce()'' represents my first step: it's a breadth-first search that generates all "moves" of the empty square until the red counter is in its final position.
// Even though a substantial amount of code is devoted to this algorithm, it is pretty straightforward and easy to implement (and I enjoyed it !).
//
// It pretty obvious that `S(m, n) = S(n, m)`. Therefore I assume in the following text that `m >= n`.
//
// I printed the results for `n <= m <= 15` and observed a pattern which lead to the faster ''search()'' (my second step):
// (1) `S(m, 2) = S(m-1, 2) + 6`
// (2) `S(m, n) = S(m, n-1) + 2`
//
// There are a few exceptions: `S(2, 2) = 0` and `S(3, 2) = 9` and `S(3, 3) = 13`.
// It took a few minutes to get everything right and, voila !, ''search()'' found the correct result 5482 for `p < 100`.
//
// The problem asks for `p < 10^6` which is `10^4` times larger - and due to the quadratic nature of my algorithm it will take about `10^8` as long. That's several days !
//
// After a few days I revisited my partial solution and further analyzed my debugging output and again, there was a pattern:
// the differences between consecutive numbers grow almost quadratic:
//
// || 4 || 4 || 4 || 10 || 6 ||
// ||! `p` ++ `p^2` ++ `S_p` ++ `diff = S_p - S_{p-1}` ++ `p^2 / diff` ||
// || 3 ++ 9 ++ 2 ++ ~ ++ ~ ||
// || 5 ++ 25 ++ 4 ++ 2 ++ 4.5 ||
// || 7 ++ 49 ++ 8 ++ 4 ++ 12.5 ||
// || 11 ++ 121 ++ 18 ++ 10 ++ 12.25 ||
// || 13 ++ 169 ++ 32 ++ 14 ++ 12.1 ||
// || 17 ++ 289 ++ 56 ++ 24 ++ 12.07143... ||
// || 19 ++ 361 ++ 86 ++ 30 ++ 12.04167... ||
// || 23 ++ 529 ++ 130 ++ 44 ++ 12.03333... ||
// || 29 ++ 841 ++ 200 ++ 70 ++ 12.02273... ||
//
// The last column gets closer and closer to 12 !
// I tried a few formulas in a spreadsheet and it turns out that `diff = (p^2 - 1) / 12` matches all cases except for `p = 3`.
//
// My final algorithm is to compute the sum of `(p^2 - 1) / 12` for all primes `p` (except for `p = 3` then it's `2`).
//
// # Note
// I couldn't find an obvious mathematical approach and solved this with a combination of programming and lots of guesswork.
// That's not desirable - well, I like the programming part but guessing isn't my strong suit.
// Admittedly, the final algorithm is very simple and could be considered "worth" only 30% but it's not an easy way to get there.
// I had to write more than 200 lines of code to "stumble upon" a one-liner solution.
#include <iostream>
#include <vector>
#include <set>
#include <cmath>
// ---------- standard prime sieve from my toolbox ----------
// odd prime numbers are marked as "true" in a bitvector
std::vector<bool> sieve;
// return true, if x is a prime number
bool isPrime(unsigned int x)
{
// handle even numbers
if ((x & 1) == 0)
return x == 2;
// lookup for odd numbers
return sieve[x >> 1];
}
// find all prime numbers from 2 to size
void fillSieve(unsigned int size)
{
// store only odd numbers
const unsigned int half = (size >> 1) + 1;
// allocate memory
sieve.resize(half, true);
// 1 is not a prime number
sieve[0] = false;
// process all relevant prime factors
for (unsigned int i = 1; 2*i*i < half; i++)
// do we have a prime factor ?
if (sieve[i])
{
// mark all its multiples as false
unsigned int current = 3*i+1;
while (current < half)
{
sieve[current] = false;
current += 2*i+1;
}
}
}
// ---------- problem specific code ----------
// (0,0) is located in the upper-left corner
struct Board
{
typedef unsigned int Number;
// position of the red counter
Number redX, redY;
// empty square
Number emptyX, emptyY;
Board(Number redX_, Number redY_, Number emptyX_, Number emptyY_)
: redX(redX_), redY(redY_), emptyX(emptyX_), emptyY(emptyY_)
{}
// for std::set
bool operator<(const Board& other) const
{
if (redX != other.redX) return redX < other.redX;
if (redY != other.redY) return redY < other.redY;
if (emptyX != other.emptyX) return emptyX < other.emptyX;
return emptyY < other.emptyY;
}
};
// breadth-search
unsigned int bruteForce(unsigned int width, unsigned int height)
{
// ensure width >= height
if (width < height)
std::swap(width, height);
// start with the red counter in the upper-left corner and empty square in lowe-right corner
Board initial(0,0, width-1,height-1);
std::vector<Board> todo = { initial };
std::set<Board> visited = { initial };
unsigned int depth = 0;
while (!todo.empty())
{
std::vector<Board> next;
for (auto current : todo)
{
// finished ?
if (current.redX == width - 1 && current.redY == height - 1)
return depth;
// "move" the empty square, ignore already visited positions
// right
if (current.emptyX + 1 < width)
{
Board right = current;
right.emptyX++;
// move red counter ?
if (right.emptyX == right.redX && right.emptyY == right.redY)
right.redX--;
// if unvisited yet, then add to queue for next iteration
if (visited.count(right) == 0)
{
next.push_back(right);
visited.insert(right);
}
}
// left
if (current.emptyX > 0)
{
Board left = current;
left.emptyX--;
// move red counter ?
if (left.emptyX == left.redX && left.emptyY == left.redY)
left.redX++;
// if unvisited yet, then add to queue for next iteration
if (visited.count(left) == 0)
{
next.push_back(left);
visited.insert(left);
}
}
// down
if (current.emptyY + 1 < height)
{
Board down = current;
down.emptyY++;
// move red counter ?
if (down.emptyX == down.redX && down.emptyY == down.redY)
down.redY--;
// if unvisited yet, then add to queue for next iteration
if (visited.count(down) == 0)
{
next.push_back(down);
visited.insert(down);
}
}
// up
if (current.emptyY > 0)
{
Board up = current;
up.emptyY--;
// move red counter ?
if (up.emptyX == up.redX && up.emptyY == up.redY)
up.redY++;
// if unvisited yet, then add to queue for next iteration
if (visited.count(up) == 0)
{
next.push_back(up);
visited.insert(up);
}
}
}
// next iteration
todo = std::move(next);
depth++;
}
// unsolvable grid
return 0; // never reached
}
// just a bit of pattern matching until it produced the same results as bruteForceSlow()
unsigned int search(unsigned int width, unsigned int height)
{
// ensure width >= height
if (width < height)
std::swap(width, height);
// small grids are impossible
if (width < 2)
return 0;
// precalculated results for 2x2, 3x2 and 3x3
if (width == 2)
return 5;
if (width == 3)
return height == 2 ? 9 : 13;
// result for height = 2
auto two = 6 * width - 9;
// and adjust for arbitrary height
auto full = two + 2 * height - 4;
// two more moves required if both sides are equal
if (width == height)
full += 2;
return full;
}
int main()
{
unsigned int limit = 1000000;
std::cin >> limit;
// verify the two drawings
//std::cout << bruteForce(2, 2) << std::endl;
//std::cout << bruteForce(5, 4) << std::endl;
// generate enough prime numbers
fillSieve(limit);
//#define VERIFY_100
#ifdef VERIFY_100
// use faster bruteForce() function to verify S(100)
for (unsigned int current = 2; current <= limit; current++)
{
if (!isPrime(current))
continue;
unsigned int sum = 0;
// verify the larger dataset p^2 where p is a prime and p < 100
for (unsigned int width = 2; search(width, 2) <= current*current; width++)
for (unsigned int height = 2; height <= width; height++)
{
auto steps = search(width, height);
// too large ?
if (steps > current * current)
break;
// is it a square of a prime ?
unsigned int root = sqrt(steps);
if (root * root != steps || !isPrime(root))
continue;
// found one more solution
sum++;
// symmetry: if (m,n) is a solution then (n,m) is a solution, too
if (width != height)
sum++;
}
// display result
std::cout << "S(" << current << ")=" << sum << std::endl;
}
#endif
// fast algorithm
unsigned long long sum = 0;
for (unsigned int p = 2; p <= limit; p++)
{
if (!isPrime(p))
continue;
// increment is (p^2 - 1) / 12
// need 64 bit for p^2
auto square = (unsigned long long) p * p;
auto increment = (square - 1) / 12;
// except if p=3
if (p == 3)
sum += 2;
else
sum += increment;
}
// finally ...
std::cout << sum << std::endl;
return 0;
}