-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0329.cpp
138 lines (123 loc) · 4.74 KB
/
euler-0329.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
// ////////////////////////////////////////////////////////
// # Title
// Prime Frog
//
// # URL
// https://projecteuler.net/problem=329
// http://euler.stephan-brumme.com/329/
//
// # Problem
// Susan has a prime frog.
// Her frog is jumping around over 500 squares numbered 1 to 500. He can only jump one square to the left or to the right, with equal probability,
// and he cannot jump outside the range [1;500].
// (if it lands at either end, it automatically jumps to the only available square on the next move.)
//
// When he is on a square with a prime number on it, he croaks 'P' (PRIME) with probability 2/3 or 'N' (NOT PRIME) with probability 1/3 just before jumping to the next square.
// When he is on a square with a number on it that is not a prime he croaks 'P' with probability 1/3 or 'N' with probability 2/3 just before jumping to the next square.
//
// Given that the frog's starting position is random with the same probability for every square, and given that she listens to his first 15 croaks,
// what is the probability that she hears the sequence PPPPNNPPPNPPNPN?
// Give your answer as a fraction p/q in reduced form.
//
// # Solved by
// Stephan Brumme
// August 2017
//
// # Algorithm
// A simple prime sieve finds all 95 primes between 1 and 500 in less than a millisecond.
// The probability of reaching a square is 1/2 and it has the "right prime label" in 1/2 or 2/3 of all cases.
// That means that there are 14 jumps and 15 "croak decisions". The denominator is always `500 * 2^14 * 3^15` (before reducing the fraction).
//
// My program calculates the numerator recursively:
// - each step checks whether the frog croaks in 1/3 or 2/3 of all cases (''chance = 1'' or ''chance = 2'')
// - then the frog jumps right or left (respecting the borders of square 1 and 500)
// - memoization speeds up the whole process
//
// The greatest common divisor of numerator and denominator is computed with the ''gcd'' function from my toolbox (this time I changed it to a template - only for the fun of it).
// The result is displayed after dividing numerator and denominator by their ''gcd'' .
//
// # Alternative
// There is no need to have the ''gcd'' function/template. The denominator has only prime factors 2, 3 and 5.
// I could repeatedly divide the numerator and denominator by those numbers.
//
// # Note
// ''Sequence'' has a dummy whitespace at position 0 because that position is unused.
// Depth ''x'' queries ''Sequence[x]'' where ''x'' starts at 1 and finished at 15.
//
// Memoization isn't strictly necessary because the result will be found without it in less than a second.
// There are just `2^15 * 500 = 16384000` final states.
#include <iostream>
#include <vector>
// find greatest common divisor
template <typename T>
T gcd(T a, T b)
{
while (a != 0)
{
T c = a;
a = b % a;
b = c;
}
return b;
}
// croaked sequence
const char* Sequence = " PPPPNNPPPNPPNPN";
// length of croaked sequence
unsigned int maxDepth = 15;
// number of different starting positions
unsigned int limit = 500;
// prime numbers <= limit
static std::vector<char> isPrime; // I started with vector<bool> but vector<char> is a bit faster
// memoize intermediate results
static std::vector<unsigned int> cache;
// return only numerator, the denominator will be (2*3)^depth (before reducing)
unsigned int probability(unsigned int square, unsigned int depth = 1)
{
// either 1/3 or 2/3, discard the constant denominator 3 for now
unsigned int chance = 1;
if (isPrime[square] ^ (Sequence[depth] == 'N'))
chance = 2;
// done ?
if (depth == maxDepth)
return chance;
// memoize
auto id = square * maxDepth + depth;
if (cache.empty())
cache.resize((maxDepth + 1) * (limit + 1), 0);
if (cache[id] != 0)
return cache[id];
auto left = square - 1;
if (left < 1) // avoid left border
left = 1 + 1;
auto right = square + 1;
if (right > limit) // avoid right border
right = limit - 1;
// jump to next square with equal probability
auto result = chance * (probability(left, depth + 1) + probability(right, depth + 1));
cache[id] = result;
return result;
}
int main()
{
std::cin >> limit >> maxDepth;
// prime sieve
isPrime.resize(limit + 1, true);
isPrime[1] = false;
for (unsigned int i = 2; i*i <= limit; i++)
if (isPrime[i])
for (unsigned int j = i*i; j <= limit; j += i)
isPrime[j] = false;
// let's croak !
unsigned long long sum = 0;
for (unsigned int i = 1; i <= limit; i++)
sum += probability(i);
// 500 * 3^15 * 2^14
unsigned long long denominator = limit;
for (unsigned int i = 1; i < maxDepth; i++)
denominator *= 3 * 2; // 3^14 * 2^14
denominator *= 3;
// reduce fraction
auto divide = gcd(sum, denominator);
std::cout << sum / divide << "/" << denominator / divide << std::endl;
return 0;
}