-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0359.cpp
247 lines (222 loc) · 9.24 KB
/
euler-0359.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
// ////////////////////////////////////////////////////////
// # Title
// Hilbert's New Hotel
//
// # URL
// https://projecteuler.net/problem=359
// http://euler.stephan-brumme.com/359/
//
// # Problem
// An infinite number of people (numbered 1, 2, 3, etc.) are lined up to get a room at Hilbert's newest infinite hotel.
// The hotel contains an infinite number of floors (numbered 1, 2, 3, etc.), and each floor contains an infinite number of rooms (numbered 1, 2, 3, etc.).
//
// Initially the hotel is empty. Hilbert declares a rule on how the nth person is assigned a room:
// person `n` gets the first vacant room in the lowest numbered floor satisfying either of the following:
//
// - the floor is empty
// - the floor is not empty, and if the latest person taking a room in that floor is person `m`, then `m + n` is a perfect square
//
// Person 1 gets room 1 in floor 1 since floor 1 is empty.
// Person 2 does not get room 2 in floor 1 since 1 + 2 = 3 is not a perfect square.
// Person 2 instead gets room 1 in floor 2 since floor 2 is empty.
// Person 3 gets room 2 in floor 1 since 1 + 3 = 4 is a perfect square.
//
// Eventually, every person in the line gets a room in the hotel.
//
// Define `P(f, r)` to be `n` if person n occupies room `r` in floor `f`, and 0 if no person occupies the room. Here are a few examples:
// `P(1, 1) = 1`
// `P(1, 2) = 3`
// `P(2, 1) = 2`
// `P(10, 20) = 440`
// `P(25, 75) = 4863`
// `P(99, 100) = 19454`
//
// Find the sum of all `P(f, r)` for all positive `f` and `r` such that `f * r = 71328803586048` and give the last 8 digits as your answer.
//
// # Solved by
// Stephan Brumme
// September 2017
//
// # Algorithm
// My standard procedure is to make sure I can solve the problem for small input values:
// - ''fillHotel()'' "puts" guests into their ''rooms''
// - ''Pslow()'' performs a simple lookup in ''rooms''
// That's pretty fast for a few thousands guests but there's no chance of solving the real problem.
//
// Printing the guest IDs of the first floors / rooms showed a certain pattern:
// || 8 || 3 || 3 || 3 || 3 || 3 || 3 || 3 || 3 || 3 ||
// ||! floor \ room ++ 1 ++ 2 ++ 3 ++ 4 ++ 5 ++ 6 ++ 7 ++ 8 ++ 9 ||
// || 1 ++ 1 ++ 3 ++ 6 ++ 10 ++ 15 ++ 21 ++ 28 ++ 36 ++ 45 ||
// || 2 ++ 2 ++ 7 ++ 9 ++ 16 ++ 20 ++ 29 ++ 35 ++ 46 ++ 54 ||
// || 3 ++ 4 ++ 5 ++ 11 ++ 14 ++ 22 ++ 27 ++ 37 ++ 44 ++ 56 ||
// || 4 ++ 8 ++ 17 ++ 19 ++ 30 ++ 34 ++ 47 ++ 53 ++ 68 ++ 76 ||
// || 5 ++ 12 ++ 13 ++ 23 ++ 26 ++ 38 ++ 43 ++ 57 ++ 64 ++ 80 ||
// || 6 ++ 18 ++ 31 ++ 33 ++ 48 ++ 52 ++ 69 ++ 75 ++ 94 ++ 102 ||
// || 7 ++ 24 ++ 25 ++ 39 ++ 42 ++ 58 ++ 63 ++ 81 ++ 88 ++ 108 ||
// || 8 ++ 32 ++ 49 ++ 51 ++ 70 ++ 74 ++ 95 ++ 101 ++ 124 ++ 132 ||
// || 9 ++ 40 ++ 41 ++ 59 ++ 62 ++ 82 ++ 87 ++ 109 ++ 116 ++ 140 ||
//
// - the first floor is the triangular series `n(n+1)/2`
// - the difference between the first and the second guest is 1 on odd floors and `2f+1` on even floors
// - the difference between the second and the third guest is 2 on odd floors and `2f` on even floors
// - differences between odd rooms on the second floor is 9-2=7, 20-9=11, 35-20=15, 54-35=19, ... ==> difference increases by 4 with each step
// - differences between even rooms on the second floor is 16-7=9, 29-16=13, 46-29=17, ... ==> difference increases by 4 with each step
// - the third, fourth, fifth, ... floor show a pattern similar to the pattern I found in the second floor
//
// There are five tasks:
// 1. be able to compute the first floor `P(1, r)`
// 2. find the first guest of a floor `P(f, 1)`
// 3. find the increment between first and second room `P(f, 2) - P(f, 1)`
// 4. find the increment between second and third room `P(f, 3) - P(f, 2)`
// 5. Based on 3. and 4. find the initial differences between odd rooms `P(f, 3) - P(f, 1)` and even rooms `P(f, 4) - P(f, 2)`
//
// With lots of trial-and-error I found that the first guest of floor `f` is
// (1) even-numbered floors: `P(f, 1) = \lfloor dfrac{floor^2}{2} \rfloor`
//
// (2) odd-numbered floors: `P(f, 1) = dfrac{(floor + 1) * (floor - 1)}{2}` except for `P(1, 1) = 1`
//
// C++ automatically truncates quotients so ''(floor + 1) / 2 * floor'' is good enough for (1) while also helpful for (2).
//
// ''incrementOdd'' and ''incrementEven'' are set according to the rules I defined above.
// Unfortunately, a simple loop would take forever for large room numbers.
// However, the constant increase of 4 per step lets me use the triangle formula `dfrac{x(x+1)}{2}` with some modifications.
//
// The input value 71328803586048 has only two prime factors: `2^27 * 3^12`.
// Iterating over each combination `2^i * 3^j` where `0 <= i <= 27` and `0 <= j <= 12` returns all 364 divisors.
//
// # Note
// Well, this is one of those problems where I ask myself: whyyyyyyy ?
// I couldn't find a scientific approach and everything I did was playing around with weird formulas until ''P()'' produced the same output as ''Pslow()''.
// I didn't learn anything new nor did I have fun.
// It's kind of strange that so many people solved this problem (with ease ?!) because I'm pretty sure I saw a few patterns just by pure luck.
//
// Please keep in mind that I had to use G++'s 128 bit integer extension and therefore the code doesn't compile with Visual C++.
#include <iostream>
#include <vector>
#include <cmath>
// ---------- slow algorithm ----------
std::vector<std::vector<unsigned int>> rooms;
// look up result in precomputed 2D vector "rooms"
unsigned int Pslow(unsigned int floor, unsigned int room)
{
// from one-indexed to zero-based
floor--;
room--;
if (floor >= rooms.size())
return 0;
if (room >= rooms[floor].size())
return 0;
return rooms[floor][room];
}
// return true if x is a perfect square
bool isSquare(unsigned int x)
{
unsigned int root = sqrt(x);
return root * root == x;
}
// precompute Hilbert's New Hotel, too slow for the problem, but solves the examples
void fillHotel(unsigned int numPersons)
{
// one iteration per person
for (unsigned int person = 1; person < numPersons; person++)
{
bool needNewFloor = true;
// try to place person in an existing floor
for (size_t floor = 0; floor < rooms.size(); floor++)
{
// last + person should be a perfect square
if (isSquare(rooms[floor].back() + person))
{
rooms[floor].push_back(person);
needNewFloor = false;
break;
}
}
// no suitable floor found, create a new floor
if (needNewFloor)
{
std::vector<unsigned int> newFloor = { person };
rooms.push_back(newFloor);
}
}
}
// ---------- fast algorithm ----------
// compute P(floor, room)
unsigned int P(unsigned long long floor, unsigned long long room, unsigned int modulo = 100000000)
{
// compute number in first room of that floor
__int128 result = (__int128)(floor + 1) / 2 * floor;
if (floor % 2 == 1 && floor > 1)
result -= (floor + 1) / 2;
// separate increments for odd and even rooms
__int128 incrementEven = 1;
if (floor % 2 == 0)
incrementEven = 2 * floor + 1;
__int128 incrementOdd = 2;
if (floor % 2 == 1)
incrementOdd = 2 * floor;
// and they are a bit different on the first floor
if (floor == 1)
{
incrementOdd = 3;
incrementEven = 2;
}
// my original code:
//for (unsigned int i = 2; i <= room; i += 2)
//{
// result += incrementEven;
// incrementEven += 2;
//}
//for (unsigned int i = 3; i <= room; i += 2)
//{
// result += incrementOdd;
// incrementOdd += 2;
//}
// and converted to a closed form:
// number of rooms with even room numbers
__int128 numEven = room / 2;
// sum of 1+2+3+...+numEven
auto triangleEven = numEven * (numEven + 1) / 2;
// sum of 2+4+6+...+2*numEven
triangleEven *= 2;
// number of rooms with even odd numbers
__int128 numOdd = (room - 1) / 2;
// sum of 1+2+3+...+numOdd
auto triangleOdd = numOdd * (numOdd + 1) / 2;
// sum of 2+4+6+...+2*numOdd
triangleOdd *= 2;
result += numEven * (incrementEven - 2) + triangleEven;
result += numOdd * (incrementOdd - 2) + triangleOdd;
return result % modulo;
}
int main()
{
auto maxExponentTwo = 27;
auto maxExponentThree = 12;
auto number = 71328803586048ULL;
std::cin >> maxExponentTwo >> maxExponentThree;
number = pow(2ULL, maxExponentTwo) * pow(3ULL, maxExponentThree);
const unsigned int Modulo = 100000000;
// solve examples with slow algorithm
//fillHotel(20000);
//std::cout << Pslow( 1, 1) << " " << Pslow( 1, 2) << " " << Pslow( 2, 1) << " "
// << Pslow(10, 20) << " " << Pslow(25, 75) << " " << Pslow(99, 100) << std::endl;
unsigned int sum = 0;
// 71328803586048 = 2^27 * 3^12
auto two = 1ULL;
// iterate over all exponents of 2 and 3
for (auto expTwo = 0; expTwo <= maxExponentTwo; expTwo++, two *= 2)
{
auto three = 1ULL;
for (auto expThree = 0; expThree <= maxExponentThree; expThree++, three *= 3)
{
auto floor = two * three; // 2^expTwo * 3^expThree
auto room = number / floor; // will be 2^(27-expTwo) * 3^(12-expThree)
sum += P(floor, room, Modulo);
sum %= Modulo;
}
}
// finally ...
std::cout << sum << std::endl;
return 0;
}