-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0375.cpp
166 lines (151 loc) · 5.98 KB
/
euler-0375.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// ////////////////////////////////////////////////////////
// # Title
// Minimum of subsequences
//
// # URL
// https://projecteuler.net/problem=375
// http://euler.stephan-brumme.com/375/
//
// # Problem
// Let `S_n` be an integer sequence produced with the following pseudo-random number generator:
// `S_0 = 290797`
// `S_{n+1} = S^2_n mod 50515093`
//
// Let `A(i, j)` be the minimum of the numbers `S_i`, `S_{i+1}`, ... , `S_j` for `i <= j`.
// Let `M(N) = sum{A(i, j)}` for `1 <= i <= j <= N`.
// We can verify that `M(10) = 432256955` and `M(10 000) = 3264567774119`.
//
// Find `M(2 000 000 000)`.
//
// # Solved by
// Stephan Brumme
// December 2017
//
// # Algorithm
// I wrote a ''bruteForce()'' algorithm in a few minutes which - to my surprise - even solves the `M(10000)` case in less than a second.
// After precomputing the first 10000 pseudo-random values it performs the following tasks for each position:
// - set ''minimum'' to the current value ''data[i]''
// - go backwards until reaching the first position, compare ''minimum'' to ''data[j]'' and update it according
// - add ''minimum'' to the result
//
// This `O(n^2)` algorithm repeatedly processes the same values.
// It's more efficient to keep track of the positions where ''data[j]'' was smaller than ''minimum''.
// For example, if the next ''minimum'' is 5 positions away, then I can easily add 5 times the current ''minimum'' to ''result''.
//
// The ''search()'' function implements this idea:
// - it has a stack ''best'' which contains those numbers smaller than the current number ("previous ''minimum's") and their position in the stream of pseudo-random numbers
// - this stack is initialized with ''0'', a number smaller than anything generated by ''pseudoRandom'' so that the stack is never empty (prevents a few corner-cases)
// - whenever a new pseudo-random number called ''current'' is generated then I reduce the stack until the top-most element is smaller than ''current''
// - ''current'' and its position ''i'' are pushed to the stack
// - for all elements of the stack I add their value and their distance to the next element of the stack to ''result''
//
// # Note
// The stack ''best'' remains quite small. It contains less than 40 values at any time.
//
// # Alternative
// My program needs just under a minute to solve the problem.
// I didn't realize that ''pseudoRandom()'' has a short cycle:
// - there can be at most 50515093 different outputs (50515093 is the modulo)
// - each number depends only on the previous number
// - whenever the internal state becomes a number I have already seen before then a new cycle starts
// - if you enable ''FIND_CYCLE'' then my code will almost instantly display 6308947.
//
// Pretty much everyone on the Project Euler forum spotted the cycle - I didn't ...
// ... but it can dramatically reduce execution time:
// - process the first cycle the same way I did
// - remember the value of ''result''
// - process the second cycle and determine how much ''result'' changed (let's call it ''delta'')
// - skip 6308947 iterations of the loop and just add ''delta'' to the ''result''
// - the last cycle will not be complete, process it the same way I did
//
// You will process less than `2 * 10^6` pseudo-random values instead of `2 * 10^9` and will find the result in less than a second (remember, my code takes a minute).
// A major drawback is that much more code is required for this faster algorithm.
#include <iostream>
#include <vector>
#include <algorithm>
// produce S1, S2, etc.
unsigned int pseudoRandom()
{
static unsigned long long state = 290797;
state *= state;
state %= 50515093;
return (unsigned int)state;
}
// basic O(n^2) algorithm, surprisingly fast for size = 10000
unsigned long long bruteForce(unsigned int size)
{
// precompute all values
std::vector<unsigned int> data = { 0 }; // dummy element to have S1,S2,... at positions 1,2,...
for (unsigned int i = 1; i <= size; i++)
data.push_back(pseudoRandom());
// just a dumb scan over all intervals
unsigned long long result = 0;
for (unsigned int i = 1; i <= size; i++)
{
auto minimum = data[i];
//for (unsigned int j = i; j <= size; j++)
for (unsigned int j = i; j >= 1; j--) // same concept as above but going backwards
{
minimum = std::min(minimum, data[j]);
result += minimum;
}
}
return result;
}
// "number" is the smallest number from its "position" to the current position
struct Minimum
{
unsigned int number;
unsigned int position;
};
// almost O(n), about a minute for size = 2*10^9
unsigned long long search(unsigned int size)
{
// basically a stack of all previous minimums
std::vector<Minimum> best;
// add an unused dummy element so that the stack never becomes empty
best.push_back({ 0, 0 });
unsigned long long result = 0;
for (unsigned int i = 1; i <= size; i++)
{
// produce next pseudo-random number
auto current = pseudoRandom();
// remove all elements larger than the current one
auto validUntil = i;
while (best.back().number >= current)
{
validUntil = best.back().position;
best.pop_back();
}
// the current value is at least the smallest value for a sequence of length 1 starting at i
best.push_back({ current, validUntil });
// add all sequences
auto last = i + 1;
for (unsigned int backwards = best.size() - 1; backwards > 0; backwards--)
{
// its the same minimum number for all those positions
unsigned long long distance = last - best[backwards].position;
result += distance * best[backwards].number;
// update position
last = best[backwards].position;
}
}
return result;
}
int main()
{
//#define FIND_CYCLE
#ifdef FIND_CYCLE
auto first = pseudoRandom();
unsigned int cycleLength = 0;
while (pseudoRandom() != first)
cycleLength++;
std::cout << "cycle length: " << cycleLength << std::endl;
#else
unsigned int limit = 2000000000;
std::cin >> limit;
//std::cout << bruteForce(limit) << std::endl;
std::cout << search(limit) << std::endl;
#endif
return 0;
}