-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0412.cpp
169 lines (146 loc) · 5.33 KB
/
euler-0412.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// ////////////////////////////////////////////////////////
// # Title
// Gnomon numbering
//
// # URL
// https://projecteuler.net/problem=412
// http://euler.stephan-brumme.com/412/
//
// # Problem
// For integers `m`, `n` (`0 <= n < m`), let `L(m, n)` be an `m * m` grid with the top-right `n * n` grid removed.
//
// For example, `L(5, 3)` looks like this:
//
// 
//
// We want to number each cell of `L(m, n)` with consecutive integers 1, 2, 3, ... such that the number in every cell is smaller than the number below it and to the left of it.
//
// For example, here are two valid numberings of `L(5, 3)`:
//
// 
//
// Let `LC(m, n)` be the number of valid numberings of `L(m, n)`.
// It can be verified that `LC(3, 0) = 42`, `LC(5, 3) = 250250`, `LC(6, 3) = 406029023400` and `LC(10, 5) mod 76543217 = 61251715`.
//
// Find `LC(10000, 5000) mod 76543217`.
//
// # Written by
// Stephan Brumme
// December 2017
//
// # Idea
// Okay, at the moment I have no idea how to solve that problem.
//
// But it was fun spending a few minutes on writing a brute-force solution for grids no larger than 6x6.
// By the way: ''bruteForce(6,3)'' finished after about 7.5 hours ...
// The next morning I wrote ''slow'' which is based on the following observation:
// - when filling the grid "in reverse order" (that means from 16 to 1), then smaller numbers are automatically stacked on larger numbers
// - each column of the grid can be seen as a "skyscraper"
// - there are no gaps in a skyscraper
// - each skyscraper is at most as high as its left neighbor
// In the end I don't have to store the single numbers in the grid (a 2D data structure).
// Instead I just need to track the height of each skyscraper (a 1D data structure).
// These heights are identical for many different number distributions so that I can accelerate the search by aggressive memoization.
// ''slow(6,3)'' finds the correct result in less than 0.01 seconds (vs. 7.5 hours !).
// Note: all results are displayed mod 76543217.
//
// However, this improved algorithm can't solve `LC(10000, 5000)` in a reasonable timeframe.
#include <iostream>
#include <vector>
#include <map>
const auto MaxSize = 10; // no grids larger than 10x10 (6x6 is already super-slow in brute-force mode)
auto size = 5; // that's m from the problem statement
auto cutout = 3; // that's n from the problem statement
const auto Modulo = 76543217;
// indicates a cell that hasn't be filled yet
const unsigned int Unknown = 0;
unsigned int cells[MaxSize][MaxSize] = { Unknown };
// add "number" and all smaller numbers to "cells", return how many combinations where found
unsigned long long bruteForce(unsigned int number)
{
// successfully filled all cells ?
if (number == 0)
{
static unsigned long long progress = 0;
if (++progress % (1 << 24) == 0)
std::cout << (progress * 100.0 / 406029023400) << "%" << std::endl;
return 1;
}
unsigned long long result = 0;
// iterate over all free spots where the left and lower neighbor are bigger (or there is no neighbor => border)
for (auto y = 0; y < size; y++)
{
// avoid the cut-out area
auto maxX = size;
if (y < cutout)
maxX = size - cutout;
for (auto x = 0; x < maxX; x++)
{
// cell previously filled ?
if (cells[x][y] != Unknown)
continue;
// all bigger numbers were already processed, so there's no gap allowed on the left or bottom
// left neighbor must exist, or there's the grid's border
if (x > 0 && cells[x-1][y] == Unknown)
continue;
// bottom neighbor must exist, or there's the grid's border
if (y < size - 1 && cells[x][y+1] == Unknown)
continue;
// okay, found an empty cell !
cells[x][y] = number;
// go deeper
result += bruteForce(number - 1);
// undo current step and keep looking for other configurations
cells[x][y] = Unknown;
}
}
return result % Modulo;
}
// my "skyscraper" algorithm
typedef std::vector<unsigned short> HeightMap;
unsigned long long slow(unsigned int number, HeightMap& height)
{
// successfully filled all cells ?
if (number == 1)
return 1;
// memoize
static std::map<HeightMap, unsigned long long> cache;
auto lookup = cache.find(height);
if (lookup != cache.end())
return lookup->second;
// find a column that isn't full and is lower than its left neighbor
unsigned long long result = 0;
for (auto i = 0; i < size; i++)
{
// maximum height
auto maxHeight = size;
if (i >= size - cutout)
maxHeight -= cutout;
if (height[i] < maxHeight)
// lower than its left neighbor ?
if (i == 0 || height[i] < height[i - 1])
{
height[i]++;
result += slow(number - 1, height);
height[i]--;
}
}
result %= Modulo;
cache[height] = result;
return result;
}
int main()
{
std::cin >> size >> cutout;
// for live tests only
if (size > MaxSize || size < cutout)
return 1;
// the highest number is always located in the lower-right corner
auto highestNumber = size * size - cutout * cutout;
// brute force
//std::cout << bruteForce(highestNumber) << std::endl;
// significantly faster, but still too slow to solve the problem (it easily solves all examples)
HeightMap height(size, 0);
std::cout << slow(highestNumber, height) << std::endl;
return 0;
}