-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0458.cpp
332 lines (294 loc) · 14 KB
/
euler-0458.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
// ////////////////////////////////////////////////////////
// # Title
// Permutations of Project
//
// # URL
// https://projecteuler.net/problem=458
// http://euler.stephan-brumme.com/458/
//
// # Problem
// Consider the alphabet `A` made out of the letters of the word "project": `A= \{c,e,j,o,p,r,t\}`.
// Let `T(n)` be the number of strings of length `n` consisting of letters from `A` that do not have a substring that is one of the 5040 permutations of "project".
// `T(7)=7^7 - 7! = 818503`.
//
// Find `T(10^12)`. Give the last 9 digits of your answer.
//
// # Solved by
// Stephan Brumme
// December 2017
//
// # Algorithm
// First let's state the most important property of the word "project": all its letters are distinct.
//
// I wrote three (!) algorithms but only the last actually solves `T(10^12)` in a reasonable amount of time (function ''fast''):
// ''bruteForce()'' was a quick hack to ensure I can solve `T(n)` for small parameters (`n < 10` is okay)
// It iterates over all possible `7^n` strings and checks every subset of 7 consecutive letters whether they can produce the word "project".
// I assign each letter P,R,O,J,E,C,T a number between 0 and 6 which in turn is used as the position in a bitmask.
// Only if seven consecutive letters are distinct then the ORed bitmask of those seven letters will be 1111111 in binary (`= 2^7 - 1 = 127` in decimal).
//
// The next algorithm's implementation is the function ''slow''. It works quite differently because it treats the whole thing as a state machine:
// - I count the number of strings __WITH__ the word "project"
// - ==> then the result is `7^n` minus that number of strings with the word "project"
// - in general: if the last `x` letters were distinct then the state machine is currently in state `x`
// - the state machine has 8 states (0 to 7) and starts in state 0
// - once state 7 is reached it stays there
//
// Initially, the variable ''state[8] = { 1,0,0,0,0,0,0,0 }'' because there is only one empty string and it's in state 0.
// No empty string can be in state 1,2,...,7.
//
// When the first letter is processed then there are 7 different letters. Each causes a transition from state 0 to state 1.
// When the second letter is processed then there are 7 differenz letters as well but I have to be careful:
// if the second letter is equal to the first letter, then I remain in state 1 else I jump to state 2.
// Remember: the current state's ID indicates how many of the last letters were distinct.
//
// When the third letter is processed then there are 3 different state transitions:
// - if the new letter is equal to the first letter, then the state machine stays in state 2
// - if the new letter is equal to the second letter, then the state machine must go back to state 1
// - if the new letter wasn't seen before then the state machine proceeds with state 3
// The same concept repeats with state 3,4,5,6.
//
// State 7 stands out because once I reach state 7 then I stay there, no matter what future letters will arrive.
// That's because I'm interesting in all strings containing the word "project" __at least once__ - and it doesn't matter if it appears 1x, 10x, 100x, ...
// I wrote a simple loop that repeatedly adds/multiplies each state by the number of different state transitions.
// That `O(n)` algorithm can solve `T(10^12)` in a few hours - still too slow !
//
// So I wrote the ''fast()'' function: the state transitions look a lot like a matrix - why not rewrite it as a ''Matrix'' ?
// The matrix's number at position x,y contains the number of transitions from state x to state y.
// For example, `M_{4,5} = ` ''M[4,5] = 3'' because 3 (out of 7) letters cause a transition from state 4 to 5.
// You'll find it in the fifth column and sixth line (the upper-right corner has index (0,0) because I used zero-based indices):
//
// `M = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\`-
// `7 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\`-
// `0 & 6 & 1 & 1 & 1 & 1 & 1 & 0 \\`-
// `0 & 0 & 5 & 1 & 1 & 1 & 1 & 0 \\`-
// `0 & 0 & 0 & 4 & 1 & 1 & 1 & 0 \\`-
// `0 & 0 & 0 & 0 & 3 & 1 & 1 & 0 \\`-
// `0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 \\`-
// `0 & 0 & 0 & 0 & 0 & 0 & 1 & 7 \end{pmatrix}`
//
// The ''state'' variable'' looks like a vector such that the computation per step is:
// (1) `state_{i+1} = M \bullet state_i`
//
// And the next step:
// (2) `state_{i+2} = M \bullet state_{i+1}`
// (3) `state_{i+2} = M \bullet (M \bullet state_i)`
// (4) `state_{i+2} = (M \bullet M) \bullet state_i`
// (5) `state_{i+2} = M^2 \bullet state_i`
//
// The last equation can be generalized to:
// (6) `state_{final} = M^n \bullet state_0`
//
// When solving problem 137 I wrote a fast exponentiation algorithm for a 2x2 matrix.
// The ''Matrix'' class written for the current problem generalizes that algorithm to larger quadratic matrices, see its ''powmod'' member function.
//
// I was too lazy to write a ''Vector'' class to represent the ''state'' variable - and I can get away with that lazy attitude ;-)
// The meaning of `M^n_{x,y}` was that the matrix `M` contains the total number of state transitions from state `x` to `y` after `n` steps.
// Hence `M^n_{0,7}` is the total number of strings __with__ the word "project" after those `n = 10^12` steps.
//
// Now I need `7^n mod 10^9` - and that number is part of the matrix, too !
// The number `M_{7,7}` is initially 7 and multiplied by itself `n` times, that's exactly what I need.
// However, I saw that `M^n_{7,7} = 1` after `n = 10^12` steps - which I found strange and I was sure I had a bug in my code.
// But Wolfram Alpha confirmed that it's correct: http://www.wolframalpha.com/input/?i=PowerMod%5B7,10%5E12,10%5E9%5D
// So the result is `M^n_{7,7} - M^n_{0,7}` (mod 1000000000).
//
// Fast exponentiation is truly fast and the correct result is displayed after a few milliseconds.
//
// # Alternative
// After submitting my result I looked at the official forum and noticed that pretty much everyone solved it the same way.
// But some postings differed completely: they found the [generating function](https://en.wikipedia.org/wiki/Generating_function) and solved it.
#include <iostream>
#include <array>
// "project" has 7 distinct letters
const auto WordSize = 7;
enum Letters { P = 0, R = 1, O = 2, J = 3, E = 4, C = 5, T = 6 };
// only the last nine digits
const unsigned int Modulo = 1000000000;
// ---------- first algorithm ----------
// super-slow brute-force algorithm, becomes unusable for numLetters > 10
unsigned long long bruteForce(unsigned int numLetters)
{
// bruteForce( 7) = 818503
// bruteForce( 8) = 5699280
// bruteForce( 9) = 39688327
// bruteForce(10) = 276386929
unsigned long long result = 0;
// 7^numLetters
unsigned long long maxId = 1;
for (unsigned long long exponent = 1; exponent <= numLetters; exponent++)
maxId *= WordSize;
// iterate over all 7^numLetters combinations
for (unsigned long long i = 0; i < maxId; i++)
{
// convert the current number to letters (it's like converting from decimal to base 7)
auto id = i;
Letters letters[20];
for (unsigned int letter = 0; letter < numLetters; letter++)
{
// I use the data type "Letters" to simplify debugging
letters[letter] = (Letters)(id % WordSize);
id /= WordSize;
}
// look at each group of 7 consecutive letters
bool isProject = false;
for (unsigned int from = 0; from + WordSize <= numLetters; from++)
{
// build a bitmask:
unsigned int mask = 0;
for (unsigned int current = 0; current < WordSize; current++)
mask |= 1 << letters[from + current];
// all seven letters used ?
if (mask == 127) // 2^7 - 1 = 127
{
isProject = true;
break;
}
}
// no seven consecutive letters can be re-order to the word "PROJECT"
if (!isProject)
result++;
}
return result;
}
// ---------- second algorithm ----------
// O(n) algorithm, needs about 2 seconds for numLetters = 10^8
unsigned long long slow(unsigned long long numLetters)
{
// state x means that currently x distinct letters were observed in the last x steps
typedef std::array<unsigned long long, 7 + 1> State;
// once we reach state 7 we have the word P,R,O,J,E,C,T (in any order) and remain in that state
// no matter what follows
State state = { 0 };
state[0] = 1; // seed
unsigned long long all = 1;
for (unsigned long long i = 1; i <= numLetters; i++)
{
// total number of strings (regardless whether they contain PROJECT or not)
all *= 7;
all %= Modulo;
State next = { 0 };
// compute all state transitions
next[1] = 7 * state[0] + 1 * state[1] + 1 * state[2] + 1 * state[3] + 1 * state[4] + 1 * state[5] + 1 * state[6];
next[2] = 6 * state[1] + 1 * state[2] + 1 * state[3] + 1 * state[4] + 1 * state[5] + 1 * state[6];
next[3] = 5 * state[2] + 1 * state[3] + 1 * state[4] + 1 * state[5] + 1 * state[6];
next[4] = 4 * state[3] + 1 * state[4] + 1 * state[5] + 1 * state[6];
next[5] = 3 * state[4] + 1 * state[5] + 1 * state[6];
next[6] = 2 * state[5] + 1 * state[6];
next[7] = + 1 * state[6];
// once I'm in state 7 I stay there
next[7] += 7 * state[7];
// keep only the last 9 digits
for (auto& x : next)
x %= Modulo;
state = std::move(next);
}
// state[7] represents the number of strings WITH the word "project"
auto withProject = state[7];
// without = all - with, but avoid negative results (due to modulo)
if (all < withProject)
all += Modulo;
return all - withProject;
}
// ---------- third and final algorithm ----------
// quadratic 2D matrix
template <typename Number, unsigned int Size>
class Matrix
{
// store all elements
std::array<std::array<Number, Size>, Size> data; // same as Number data[Size][Size];
public:
// set all elements to zero
Matrix()
: data()
{
for (unsigned int i = 0; i < Size; i++)
data[i].fill(0);
}
// access a field (read/write), indices are zero-based
Number& operator()(unsigned int column, unsigned int row)
{
return data[row][column];
}
// access a field (read-only), indices are zero-based
Number get(unsigned int column, unsigned int row) const
{
return data[row][column];
}
// multiply two matrices
Matrix operator*(const Matrix& other) const
{
Matrix result; // initially all fields are zero
for (unsigned int i = 0; i < Size; i++)
for (unsigned int j = 0; j < Size; j++)
for (unsigned int k = 0; k < Size; k++)
result(i,k) += get(j,k) * other.get(i,j);
return result;
}
// fast exponentiation with modulo
Matrix powmod(unsigned long long exponent, unsigned int modulo) const
{
// more or less the same concept as powmod from my toolbox (which works on integers instead of matrices)
// start with identity matrix
Matrix result;
for (unsigned int i = 0; i < Size; i++)
result(i,i) = 1;
Matrix base = *this;
while (exponent > 0)
{
// fast exponentation:
// odd exponent ? a^b = a*a^(b-1)
if (exponent & 1)
{
result = result * base;
// modulo
for (unsigned int i = 0; i < Size; i++)
for (unsigned int k = 0; k < Size; k++)
result(i,k) = result(i,k) % modulo;
}
// even exponent ? a^b = (a*a)^(b/2)
base = base * base;
// modulo
for (unsigned int i = 0; i < Size; i++)
for (unsigned int k = 0; k < Size; k++)
base(i,k) = base(i,k) % modulo;
exponent >>= 1;
}
return result;
}
};
// solve "almost instantly", too fast to measure execution time ...
unsigned long long fast(unsigned long long numLetters)
{
// same concept as slow() but rewritten with Matrix
// state transitions
Matrix<unsigned long long, 8> mat;
mat(0,0) = 0; mat(1,0) = 0; mat(2,0) = 0; mat(3,0) = 0; mat(4,0) = 0; mat(5,0) = 0; mat(6,0) = 0; mat(7,0) = 0;
mat(0,1) = 7; mat(1,1) = 1; mat(2,1) = 1; mat(3,1) = 1; mat(4,1) = 1; mat(5,1) = 1; mat(6,1) = 1; mat(7,1) = 0;
mat(0,2) = 0; mat(1,2) = 6; mat(2,2) = 1; mat(3,2) = 1; mat(4,2) = 1; mat(5,2) = 1; mat(6,2) = 1; mat(7,2) = 0;
mat(0,3) = 0; mat(1,3) = 0; mat(2,3) = 5; mat(3,3) = 1; mat(4,3) = 1; mat(5,3) = 1; mat(6,3) = 1; mat(7,3) = 0;
mat(0,4) = 0; mat(1,4) = 0; mat(2,4) = 0; mat(3,4) = 4; mat(4,4) = 1; mat(5,4) = 1; mat(6,4) = 1; mat(7,4) = 0;
mat(0,5) = 0; mat(1,5) = 0; mat(2,5) = 0; mat(3,5) = 0; mat(4,5) = 3; mat(5,5) = 1; mat(6,5) = 1; mat(7,5) = 0;
mat(0,6) = 0; mat(1,6) = 0; mat(2,6) = 0; mat(3,6) = 0; mat(4,6) = 0; mat(5,6) = 2; mat(6,6) = 1; mat(7,6) = 0;
mat(0,7) = 0; mat(1,7) = 0; mat(2,7) = 0; mat(3,7) = 0; mat(4,7) = 0; mat(5,7) = 0; mat(6,7) = 1; mat(7,7) = 7;
// note: I could have skipped all those mat(x,y) = 0 because all cell are initialized with zero anyway
// exponentiate matrix
auto superMatrix = mat.powmod(numLetters, Modulo);
// the number of strings WITH the word "project" (number of ways to transition from state 0 to 7)
auto withProject = superMatrix.get(0,7);
// total number of combinations is 7^numLetters
// => I could use powmod(7, 10^12, Modulo) from my toolbox, but there's a 7 in the lower-right corner of the matrix at 7,7
// and since it's exponated as well, it becomes (7^numLetters) % Modulo and that's just what I need
auto all = superMatrix.get(7,7); // and surprisingly 7^(10^12) % 10^9 = 1 !
// without = all - with, but avoid negative results (due to modulo)
if (all < withProject)
all += Modulo;
return all - withProject;
}
int main()
{
unsigned long long limit = 1000000000000ULL; // 10^12
std::cin >> limit;
//std::cout << bruteForce(limit) << std::endl;
//std::cout << slow(limit) << std::endl;
std::cout << fast(limit) << std::endl;
return 0;
}