-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0491.cpp
190 lines (174 loc) · 7.45 KB
/
euler-0491.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
// ////////////////////////////////////////////////////////
// # Title
// Double pandigital number divisible by 11
//
// # URL
// https://projecteuler.net/problem=491
// http://euler.stephan-brumme.com/491/
//
// # Problem
// We call a positive integer double pandigital if it uses all the digits 0 to 9 exactly twice (with no leading zero).
// For example, 40561817703823564929 is one such number.
//
// How many double pandigital numbers are divisible by 11?
//
// # Solved by
// Stephan Brumme
// August 2017
//
// # Algorithm
// ''bruteForce'' counts all permutations which are divisible by 11.
// It finds the correct result in a reasonable amount of time when the highest digit is 6.
// And of course that simple approach is way to slow when the highest digit is 9.
//
// A number is divisible by 11 if the difference of the sum of the digits at odd and the even positions is divisible by 11.
// 40561817703823564929 is __not__ divisible by 11 because 4+5+1+1+7+0+2+5+4+2 = 31 and 0+6+8+7+0+8+3+6+9+9 = 56 and 56 - 31= 25 is not divisible by 11.
// There is actually an astonishing variety of rules for divisibility by 11: https://en.wikipedia.org/wiki/Divisibility_rule
//
// All double pandigital numbers are permutations of the string ''"00112233445566778899"'' (excluding leading zeros).
// Ten of these digits will be at odd positions and ten at even positions.
// If I create a bitmask which digits will be at odd positions then I need a 20-bit integer where exactly 10 bits are set.
//
// All bitmasks with exactly 10 bits set are between 00000000001111111111b (''minBitmask'') and 11111111110000000000b (''maxBitmask'').
// The nice function ''nextNumberWithSameBits(x)'' creates the next number with the same number of bits set as ''x'' and was first published in HAKMEM 175 (often called "snoob").
//
// However, there are a few bordercases:
// I can choose a digit once, twice or not at all to appear at an odd position. A bitmask might be:
// || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 ||
// || 9 || 9 || 8 || 8 || 7 || 7 || 6 || 6 || 5 || 5 || 4 || 4 || 3 || 3 || 2 || 2 || 1 || 1 || 0 || 0 ||
// || 0 || 1 || 0 || 0 || 1 || 1 || 0 || 1 || 0 || 1 || 0 || 1 || 1 || 1 || 0 || 0 || 0 || 1 || 0 || 1 ||
// ==> exactly 10 bits set
// For each digit I must only accept the bit patterns:
// 01 (=> use that digit once, e.g. for 9,6,...),
// 11 (twice, e.g. for 7 and 3) and
// 00 (none, e.g. for 8 and 2)
// I __must not__ accept bit pattern 10 because it's the same as 01 (see my loop with the variable ''reduce'').
//
// The sum of all digits is `2 * T(9)` where `T` is the triangular number:
// `digitSum = 2 * dfrac{9 * (9 + 1)}{2} = 90`
//
// The sum of all digits at even positions can be computed when I know the sum of all digits at odd positions:
// `sumEven = digitSum - sumOdd`
//
// And the difference of `sumEven` and `sumOdd` has to be divisible by 11:
// `(sumEven - sumOdd) == 0 mod 11`
// `((digitSum - sumOdd) - sumOdd) == 0 mod 11`
// `(digitSum - 2 * sumOdd) == 0 mod 11`
//
// Whenever I know that the bitmasks generate matching numbers I have to figure out how many different numbers are possible.
// If `x_i` represents how often `x` appears at odd positions then `x_i` can be either 0, 1 or 2.
// The total number of permutations will be:
// `p(x) = dfrac{10!}{x_0!x_1!x_2!...x_9!}`
//
// If `y_i` represents how often `y` appears at even positions then `y_i` can be either 0, 1 or 2. The formula remains the same:
// `p(y) = dfrac{10!}{y_0!y_1!y_2!...y_9!}`
//
// And the sum of all `p(x)p(y)` will be the result.
// Interesting is that the number of digits that appear twice is the same for `p(x)` and `p(y)`. Even though a few `x_i != y_i`, it's still `p(x) = p(y)`.
// There my code simplifies to ''result += permutationsRepeated[repeated] * permutationsRepeated[repeated];''
//
// Excluding leading zeros is simple: just multiply with `frac{9}{10}`.
#include <iostream>
#include <string>
#include <algorithm>
#include <cstdlib>
// count all numbers, where highest digit is maxDigit
unsigned long long bruteForce(unsigned int maxDigit)
{
unsigned long long result = 0;
// keep only a few digits
std::string digits = "10012233445566778899"; // smallest number without a leading zero
digits.resize(maxDigit * 2 + 2);
// count numbers divisible by 11
do
{
if (std::stoll(digits) % 11 == 0)
result++;
} while (std::next_permutation(digits.begin(), digits.end()));
return result;
}
// return next higher number with same number of bits set
unsigned int nextNumberWithSameBits(unsigned int x)
{
// from HAKMEM 175
// see http://www.hackersdelight.org/hdcodetxt/snoob.c.txt
auto smallest = x & -x;
auto ripple = x + smallest;
auto ones = ripple ^ x;
return ((ones >> 2) / smallest) | ripple;
}
// count numbers by using permutations
unsigned long long fast(unsigned int maxDigit)
{
unsigned long long result = 0;
int digitSum = 2 * (maxDigit + 1) * maxDigit / 2; // = (maxDigit + 1) * maxDigit = 90
auto numDigits = 2 * (maxDigit + 1); // = 20
// precompute number of permutations with repeated elements
unsigned long long factorial = 1;
for (unsigned int i = 1; i <= maxDigit + 1; i++)
factorial *= i; // 10! = 3628800
// 10!, 10!/2!, 10!/2!2!, 10!/2!2!2!, ...
unsigned long long permutationsRepeated[10];
for (unsigned int i = 0; i <= maxDigit; i++)
permutationsRepeated[i] = factorial >> i;
// smallest bitmask where maxDigits bits are set
auto minBitmask = (1 << (maxDigit + 1)) - 1;
// largest bitmask where maxDigits bits are set
auto maxBitmask = minBitmask << (maxDigit + 1);
// process all bitmasks where maxDigits bits are set
for (auto bitmask = minBitmask; bitmask <= maxBitmask; bitmask = nextNumberWithSameBits(bitmask))
{
// when picking a number for odd positions:
// choose a digit once, twice or not at all
// e.g. bits represent 99887766554433221100
// and the current choice might be 01001101010111000101
// (exactly 10 bits set)
// for each digit only accept the bit patterns 01 (once, e.g. for 9,6,...),
// 11 (twice, e.g. for 7 and 3) and
// 00 (none, e.g. for 8 and 2)
// DO NOT accept 10 because it's the same as 01
// ok will be false if bit pattern 10 is found
auto reduce = bitmask;
bool ok = true;
while (reduce > 0)
{
// lowest two bits are 10b (=2 decimal) ?
if ((reduce & 3) == 2)
{
ok = false;
break;
}
// next two bits
reduce >>= 2;
}
if (!ok)
continue;
// add all digits at odd positions and count how many digits are repeatedly present at odd positions
int sumOdd = 0;
auto repeated = 0; // it's actually the same value for odd and even positions
for (unsigned int pos = 0; pos < numDigits; pos++)
{
// bit set ? use that digit
if (bitmask & (1 << pos))
{
sumOdd += pos / 2;
// use that digit twice ? (bit pattern 11b)
if (pos & 1) // same as repeated += pos & 1;
repeated++;
}
}
// divisible by 11 ?
if ((digitSum - 2*sumOdd) % 11 == 0)
result += permutationsRepeated[repeated] * permutationsRepeated[repeated];
}
// exclude leading zeros
return result * maxDigit / (maxDigit + 1);
}
int main()
{
unsigned int numDigits = 9;
std::cin >> numDigits;
//std::cout << bruteForce(numDigits) << std::endl;
std::cout << fast(numDigits) << std::endl;
return 0;
}