-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0501.cpp
249 lines (217 loc) · 7.84 KB
/
euler-0501.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// ////////////////////////////////////////////////////////
// # Title
// Eight Divisors
//
// # URL
// https://projecteuler.net/problem=501
// http://euler.stephan-brumme.com/501/
//
// # Problem
// The eight divisors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24.
// The ten numbers not exceeding 100 having exactly eight divisors are 24, 30, 40, 42, 54, 56, 66, 70, 78 and 88.
// Let `f(n)` be the count of numbers not exceeding `n` with exactly eight divisors.
// You are given `f(100) = 10`, `f(1000) = 180` and `f(10^6) = 224427`.
// Find `f(10^12)`.
//
// # Solved by
// Stephan Brumme
// August 2017
//
// # Algorithm
// When a number `n` is split into its prime factors `p_1`, `p_2`, ... and each prime factors is found `q_1`, `q_2`, ... times then
// `n = p_1^{q_1} * p_2^{q_2} * ...`
//
// The number of divisors is (see https://en.wikipedia.org/wiki/Divisor_function ):
// `d = (q_1 + 1) * (q_2 + 1) * ...`
//
// For `d = 8` there are only three possible combinations:
// `8 = 2 * 2 * 2 = 4 * 2 = 8 * 1`
//
// The first case means that `n` has three different prime factors `p_1`, `p_2` and `p_3` where:
// `q_1 = q_2 = q_3 = 1` when `n = p_1 * p_2 * p_3`
//
// To fulfil the second case, `n` needs exactly two different prime factor `p_1` and `p_2` where:
// `q_1 = 3` and `q_2 = 1` when `n = p_1^3 * p_2`
//
// And the third case applies `n` has only one prime factor `p_1`:
// `q_1 = 7` when `n = p_1^7`
//
// 24 has eight prime factors because of the second case: `24 = 2^3 * 3`.
//
// Case 1 needs the most time: two nested loops iterate over all prime numbers `p_1` and `p_2` where `p_1 < p_2`.
// Adding a third nested loop for `p_3` (with `p_2 < p_3`) would work but take forever.
// That's where the ''countPrimes(n)'' function comes into play: it returns the number of prime up to ''n''.
// To find the number of primes `p_3` for `p_2 < p_3 <= n`: `\#(p_3) = countPrimes(n / p_1 p_2) - countPrimes(p_2)`
//
// The second case is built on the same idea but needs only a single loops.
//
// There are just a few numbers for the third case and a simple loop without ''countPrimes'' suffices.
//
// I didn't write the ''countPrimes'' function - I found almost working code on http://am-just-a-nobody.blogspot.de/2015/11/c-code-for-primepi-function.html
// and improved it to match my needs. See my code comments for further details.
// In other programming languages it is often called ''PrimePi''.
//
// # Note
// You can still find my initial brute-force code (see ''hasEightDivisors''). It can easily solve for `n = 10^6` but is much too slow for `n = 10^12`.
//
// There are probably faster algorithm to count a number of primes. My program finishes in just under a minute but needs only 15 MByte RAM.
// This Wikipedia page lists a few alternatives: https://en.wikipedia.org/wiki/Prime-counting_function
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
// ---------- brute-force code for small numbers, not used anymore ----------
// simple trial-division algorithm, too slow for large numbers
bool hasEightDivisors(unsigned long long n)
{
unsigned int count = 2; // always at least two divisors: 1 and n
for (unsigned long long i = 2; i*i <= n; i++)
if (n % i == 0) // found a divisor ?
{
if (i*i == n)
count++; // perfect square
else
count += 2; // i is a divisor and n/i as well
// abort early
if (count > 8)
return false;
}
// exactly 8 divisors ?
return count == 8;
}
// ---------- and now the currently used code ----------
// return the number of primes up to n
// similar to PrimePi in popular math software
std::vector<unsigned int> primes; // will contain all primes up to sqrt(n)
unsigned long long countPrimes(unsigned long long n)
{
// based on http://am-just-a-nobody.blogspot.de/2015/11/c-code-for-primepi-function.html
// algorithm http://am-just-a-nobody.blogspot.de/2015/11/algorithm-for-summing-all-primes-less.html
// I don't have a thorough understanding of the code ...
// but added these features:
// - allocate only as much memory as actually needed
// - fixed out-of-bounds errors
// - remove the MOD and return the actual result
// - made variables as local as possible
// - find quick result for small n (when primes[] contains enough numbers)
// if primes[] contains enough elements then run a fast binary search
if (!primes.empty() && primes.back() > n)
{
// find smallest number larger than n
auto i = std::upper_bound(primes.begin(), primes.end(), n);
return std::distance(primes.begin(), i);
}
auto v = (unsigned int)sqrt(n);
// about sqrt(n) * 12 bytes, for n = 10^12 => 12 MByte plus primes[]
std::vector<unsigned long long> higher(v+2, 0);
std::vector<unsigned int> lower (v+2, 0);
std::vector<bool> used (v+2, false);
// assume all numbers are prime numbers
unsigned long long result = n - 1;
// the remaining lines subtract composites until result contains the number of primes
// set up lower and upper bound
for (unsigned int p = 2; p <= v; p++)
{
lower [p] = p - 1;
higher[p] = n / p - 1;
}
for (unsigned int p = 2; p <= v; p++)
{
// composite ?
if (lower[p] == lower[p - 1])
continue;
// store prime numbers (if not already existing)
if (primes.empty() || p > primes.back())
primes.push_back(p);
auto temp = lower[p - 1];
// remove more composites
result -= higher[p] - temp;
auto pSquare = (unsigned long long)p * p;
auto end = std::min<unsigned long long>(v, n / pSquare);
// alternate between 1 and 2
auto j = 1 + (p & 1);
// adjust upper bound
for (auto i = p + j; i <= end + 1; i += j)
{
if (used[i])
continue;
auto d = i * p;
if (d <= v)
higher[i] -= higher[d] - temp;
else
higher[i] -= lower[n / d] - temp;
}
// adjust lower bound
for (auto i = v; i >= pSquare; i--)
lower[i] -= lower[i / p] - temp;
// cross off multiples
for (auto i = pSquare; i <= end; i += p*j)
used[i] = true;
}
return result;
}
// count all primes with exactly 8 divisors
unsigned long long fast(unsigned long long n)
{
// note: as a side effect, countPrimes generates all requires prime numbers
// which I need in the upcomig loops
// I don't actually care about the result of countPrimes(n) right now
countPrimes(n); // a dedicated sieve might be faster, though
// a * b * c where a < b < c
unsigned long long countABC = 0;
for (size_t indexA = 0; indexA < primes.size(); indexA++)
{
unsigned long long a = primes[indexA];
if (a * a * a > n)
break;
for (size_t indexB = indexA + 1; indexB < primes.size(); indexB++)
{
auto b = primes[indexB];
// min(c) = next prime after b
// max(c) = last prime before n / (a*b)
auto maxC = n / (a * b);
if (maxC <= b)
break;
// count all primes between min(c) and max(c)
auto high = countPrimes(maxC);
auto low = indexB + 1; // same as countPrimes(b);
countABC += high - low;
}
}
// a^3 * b
unsigned long long countA3B = 0;
for (auto a : primes)
{
auto maxB = n / ((unsigned long long)a * a * a);
if (maxB <= 1)
break;
// b can be any prime
auto numB = countPrimes(maxB);
// but b must differ from a
if (maxB >= a)
numB--;
countA3B += numB;
}
// a^7
unsigned long long countA7 = 0;
for (auto a : primes)
{
if ((unsigned long long) a * a * a * a * a * a * a > n)
break;
countA7++;
}
return countABC + countA3B + countA7;
}
int main()
{
auto limit = 1000000000000ULL;
std::cin >> limit;
// find all number with naive approach (= extremely slow)
//unsigned long long count = 0;
//for (unsigned long long i = 1; i <= limit; i++)
// if (hasEightDivisors(i))
// count++;
//std::cout << count << std::endl;
std::cout << fast(limit) << std::endl;
return 0;
}