-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0516.cpp
184 lines (163 loc) · 7.19 KB
/
euler-0516.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// ////////////////////////////////////////////////////////
// # Title
// 5-smooth totients
//
// # URL
// https://projecteuler.net/problem=516
// http://euler.stephan-brumme.com/516/
//
// # Problem
// 5-smooth numbers are numbers whose largest prime factor doesn't exceed 5.
// 5-smooth numbers are also called Hamming numbers.
// Let `S(L)` be the sum of the numbers `n` not exceeding `L` such that Euler's totient function `phi(n)` is a Hamming number.
// `S(100)=3728`.
//
// Find `S(10^12)`. Give your answer modulo `2^32`.
//
// # Solved by
// Stephan Brumme
// November 2017
//
// # Algorithm
// The three fundamental properties of `phi` are (see https://en.wikipedia.org/wiki/Euler%27s_totient_function ):
// (1) `phi(p) = p - 1` if `p` is prime
// (2) `phi(p^k) = p^{k-1} * (p - 1)` if `p` is prime
// (3) `phi(xy) = phi(x) * phi(y)` if `x` and `y` are coprime
//
// A 5-smooth Hamming number can be written as `2^a 3^b 5^c`.
// From (1) follows that if the successor of a Hamming number is prime, then that prime has a totient which is a Hamming number:
// (4) `phi(2^a 3^b 5^c + 1) = 2^a 3^b 5^c` if `2^a 3^b 5^c + 1` is prime
//
// From (2) and (3) follows that the totient of each Hamming number is a Hamming number, too:
// (5) `phi(2^a 3^b 5^c) = phi(2^a) * phi(3^b) * phi(5^c)`
// (6) `= 2^{a-1} * (2-1) * 3^{b-1} * (3-1) * 5^{c-1} * (5-1)`
// (7) `= 2^{a-1} * 3^{b-1} * 2 * 5^{c-1} * 4`
// (8) `= 2^{a+2} * 3^{b-1} * 5^{c-1}`
//
// And from (3) and (4) follows that if the totient of two primes `p_1` and `p_2` is a Hamming numbers each, then their product is a Hamming number as well:
// (9) `phi(p_1 p_2) = phi(p_1) * phi(p_2)`
// (10) `= 2^{a_1} 3^{b_1} 5^{c_1} * 2^{a_2} 3^{b_2} 5^{c_2}`
// (11) `= 2^{a_1 + a_2} 3^{b_1 + b_2} 5^{c_1 + c_2}`
//
// This applies not only to the product of two primes but also to the product of any number of (distinct) primes with a Hamming totient.
// To avoid further confusion: let's assume that all those primes are bigger than 5.
//
// Multiplying each such product by `2^k` produces another Hamming number because:
// (12) `phi(2^k p_1 p_2) = phi(2^k) * phi(p) = 2^{k-1} * phi(p)`
// Multiplying each such product by `3^k` produces another Hamming number because:
// (13) `phi(3^k p) = phi(3^k) * phi(p) = 3^{k-1} * 2 * phi(p)`
// Multiplying each such product by `5^k` produces another Hamming number because:
// (14) `phi(5^k p) = phi(5^k) * phi(p) = 5^{k-1} * 2^2 * phi(p)`
//
// In general: since 2, 3 and 5 are coprime, multiplying each such product by `2^a 3^b 5^c` produces another Hamming number (see (3) ).
//
// The algorithm now looks as follows:
// - find all Hamming numbers up to `10^12` and store them in ''hamming'' (3428 numbers)
// - find all prime numbers that are the successor of a Hamming number and store them in ''primes'' (545 numbers)
// - multiply all values of ''primes'' in every possible way, but each prime must appear at most once per product (and obviously the product must not exceed `10^12`).
// - multiply each such product by all Hamming numbers (again: not exceeding `10^12`)
//
// # Note
// I wasn't sure whether I could have missed a few numbers whose totient is a Hamming number, too.
// My program found the correct value for `S(100)` so I hoped for the best - and indeed, my result for `S(10^12)` was correct.
//
// The main loop processes a queue of all prime number products.
// Initially I was keen on keeping the queue sorted but soon discovered that it doesn't matter.
// Even more, it doesn't matter which numbers you process first: processing the last (= largest) numbers first is faster and saves memory, too,
// because the queue doesn't grow too much.
//
// Almost all of my solutions which need a prime test either use a simple prime sieve or my implementation of the Miller-Rabin test.
// Since the Miller-Rabin test is more than 100 lines long and not easily understandable, I often hesitate to include it.
// This time I decided to give my wheel-based prime test a chance (see https://en.wikipedia.org/wiki/Wheel_factorization , it's part of my [toolbox](/toolbox/), too).
#include <iostream>
#include <vector>
#include <algorithm>
// ---------- finally I found a problem for my wheel-based prime test (waiting in my toolbox for ages ...) ----------
// wheel-based prime test
bool isPrime(unsigned long long x)
{
// prime test for 2, 3 and 5 and their multiples
if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0)
return x == 2 || x == 3 || x == 5;
// wheel with size 30 (=2*3*5):
// test against 30m+1, 30m+7, 30m+11, 30m+13, 30m+17, 30m+19, 30m+23, 30m+29
// their deltas/increments are:
const unsigned int Delta[] = { 6, 4, 2, 4, 2, 4, 6, 2 };
// start with 7, which is 30*0+7
unsigned long long i = 7;
// 7 belongs to the second test group
auto pos = 1;
// check numbers up to sqrt(x)
while (i*i <= x)
{
// not prime ?
if (x % i == 0)
return false;
// skip forward to next test divisor
i += Delta[pos];
// next delta/increment
pos = (pos + 1) & 7;
}
// passed all tests, must be a prime number
return x > 1;
}
// ---------- problem-specific code ----------
// store all 3428 Hamming number smaller than 10^12
// and all 545 primes that are a successor of a Hamming number
std::vector<unsigned long long> hamming;
std::vector<unsigned long long> primes;
int main()
{
unsigned long long limit = 1000000000000; // 10^12
std::cin >> limit;
// iterate over all numbers 2^a * 3^b * 5^c
for (unsigned long long two = 1; two <= limit; two *= 2)
for (unsigned long long three = 1; two*three <= limit; three *= 3)
for (unsigned long long five = 1; two*three*five <= limit; five *= 5)
{
auto current = two * three * five;
// including 1 which is not divisible by 2, 3, or 5 but still 5-smooth
hamming.push_back(current);
if (isPrime(current + 1) && current > 5)
primes.push_back(current + 1);
}
// in ascending order ...
std::sort(hamming.begin(), hamming.end());
std::sort(primes.begin(), primes.end());
// store all numbers where phi(x) is 5-smooth
// first=number, second=largest prime factor of that number
typedef std::pair<unsigned long long, unsigned long long> Candidate;
std::vector<Candidate> todo;
// "seed value"
todo.push_back({ 1, 1 });
unsigned long long sum = 0;
while (!todo.empty())
{
// pick next candidate
// note: it's much faster to pick larger candidates first to keep the queue short
auto number = todo.back().first;
auto largestPrime = todo.back().second;
todo.pop_back();
// multiply with all Hamming numbers, each result's totient is a Hamming number, too
for (auto x : hamming)
{
auto next = x * number;
if (next > limit)
break;
sum += next;
}
// multiply with all primes that are larger than the currently largest prime
auto nextPrime = std::upper_bound(primes.begin(), primes.end(), largestPrime);
for (; nextPrime != primes.end(); nextPrime++)
{
auto next = *nextPrime * number;
if (next > limit)
break;
todo.push_back({ next, *nextPrime });
}
}
// same as modulo 2^32
sum &= 0xFFFFFFFF; // alternatively, I could have cast it to a 32-bit integer
std::cout << sum << std::endl;
return 0;
}