-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0549.cpp
228 lines (201 loc) · 6.91 KB
/
euler-0549.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// ////////////////////////////////////////////////////////
// # Title
// Divisibility of factorials
//
// # URL
// https://projecteuler.net/problem=549
// http://euler.stephan-brumme.com/549/
//
// # Problem
// The smallest number `m` such that 10 divides `m!` is `m=5`.
// The smallest number `m` such that 25 divides `m!` is `m=10`.
//
// Let `s(n)` be the smallest number `m` such that `n` divides `m!`.
// So `s(10)=5` and s(25)=10`.
// Let `S(n)` be `sum{s(i)}` for `2 <= i <= n`.
// `S(100)=2012`.
//
// Find `S(10^8)`.
//
// # Solved by
// Stephan Brumme
// August 2017
//
// # Algorithm
// As always I wrote a simple function to solve the problem for small values.
// The function ''naive(n)'' returns `s(n)` and easily verifies that `s(2) + s(3) + s(4) + ... + s(100) = 2012`.
// Unfortunately it way too slow to find `s(10^8)` in a reasonable amount of time.
// (If you had enough spare time it would produce the correct result eventually).
//
// ''naive(n)'' computes `1! mod n`, then `2! mod n`, `3! mod n`, ... until it finds a value ''result'' such that `result! mod n == 0`.
//
// It took me a while to realize that
// `s(n) = s(p^{e_p} * other) = max(s(p^{e_p}), s(other) )`
//
// In plain English: if I factorize `n` into its prime factors `p_1`, `p_2`, ... then I only need to find a way to compute `s(p^{e_p})`
// where `e_p` is the exponent of the prime factors.
// An example:
// `24 = 2^3 * 3^1`
// `s(24) = s(2^3 * 3) = max(s(2^3), s(3)) = max(4, 3) = 4`
//
// Resolving the recursive structure of the formula shown above:
// `s(n) = max(s(p_1^{e_1}), s(p_2^{e_2}), s(p_3^{e_3}), ...)`
// where `p_i` are the prime factors of `n` and `e_i` the exponents of those prime factors.
//
// Obviously for each prime `p` we have `s(p^1) = p` because `p!` is the smallest factorial which contains `p` and thus can be divided by `p`.
// A modified version of the ''naive'' algorithm is pretty fast when it comes to finding `s(p^{e_p})`:
// instead of looking at each consecutive factorial `1!`, `2!`, `3!`, ... I only look at each factorial that is a multiple of `p`:
// `p! mod p^{e_p}`, `(2p)! mod p^{e_p}`, `(3p)! mod p^{e_p}`, ... until I find some `(x * p)! mod p^{e_p} == 0`.
// My ''cache'' contains only 2633 such values `prime^{2 ... x} < 10^8`.
//
// Whenever the ''main()'' function finds a prime number, then it adds its powers to the ''cache''.
// For all composite numbers it calls ''getSmallestFactorial'' which performs a prime factorization and returns the maximum value of any prime power encountered.
//
// # Note
// I'm surprised that this problem has a rating of only 10%. There are many easier problems with a higher percentage.
// In my personal opinion its rating should be something like 40%.
//
// Copying all prime numbers to a dense ''std::vector'' gives a little speed boost (almost 3x) in ''getSmallestFactorial'' at the cost of about 40 MByte RAM consumption.
// The high execution time (about 30 seconds) combined with an increased memory usage puts my solution in the top spot of the "[most expensive solutions](../performance/#slowandbig)" (as of August 2017) -
// I didn't expect that when I saw the 10% rating ...
//
// # Alternative
// It's possible to write faster solutions using some special properties of the Kempner function (see https://en.wikipedia.org/wiki/Kempner_function ).
// However, I wasn't aware of it and therefore didn't look it up.
#include <iostream>
#include <vector>
#include <unordered_map>
#include <algorithm>
// ---------- standard prime sieve from my toolbox ----------
// odd prime numbers are marked as "true" in a bitvector
std::vector<bool> sieve;
// return true, if x is a prime number
bool isPrime(unsigned int x)
{
// handle even numbers
if ((x & 1) == 0)
return x == 2;
// lookup for odd numbers
return sieve[x >> 1];
}
// find all prime numbers from 2 to size
void fillSieve(unsigned int size)
{
// store only odd numbers
const unsigned int half = (size >> 1) + 1;
// allocate memory
sieve.resize(half, true);
// 1 is not a prime number
sieve[0] = false;
// process all relevant prime factors
for (unsigned int i = 1; 2*i*i < half; i++)
// do we have a prime factor ?
if (sieve[i])
{
// mark all its multiples as false
unsigned int current = 3*i+1;
while (current < half)
{
sieve[current] = false;
current += 2*i+1;
}
}
}
// ---------- problem specific code ----------
// compute all factorials until factorial % n == 0
unsigned int naive(unsigned int n)
{
unsigned long long factorial = 1;
unsigned int result = 0;
while (factorial % n != 0)
{
result++;
factorial *= result;
factorial %= n;
}
return result;
}
// all prime numbers < 10^8
std::vector<unsigned int> primes;
// cache for i^2, i^3, i^4, ... where i is prime
std::unordered_map<unsigned int, unsigned int> cache;
// compute s(n)
unsigned int getSmallestFactorial(unsigned int n)
{
// will be the result
unsigned int best = 0;
// split off all prime factors
for (auto p : primes)
{
// p is not a prime factor of the current number ?
if (n % p != 0)
continue;
// extract the current prime factor as often as possible
// e.g. => 24 => 2^3 * 3 => primePower will be 8 and reduced = 3
unsigned int primePower = 1;
do
{
n /= p;
primePower *= p;
} while (n % p == 0);
// higher result ?
best = std::max(best, cache[primePower]);
// no further factorization possible ?
if (n == 1)
return best;
if (isPrime(n))
// s(prime) = prime
return std::max(best, n);
}
return best;
}
int main()
{
unsigned int limit = 100000000;
std::cin >> limit;
unsigned long long sum = 0;
// simple algorithm, too slow
//for (unsigned int i = 2; i <= 100; i++)
// sum += naive(i);
// and now the more sophisticated approach
// find all primes below 10^8
fillSieve(limit);
// copy those 5761455 primes to a dense array for faster access
for (unsigned int i = 2; i < limit; i++)
if (isPrime(i))
primes.push_back(i);
// find result for numbers with are powers of a single prime
for (unsigned int i = 2; i <= limit; i++)
{
if (isPrime(i))
{
// pre-compute all values of i^2, i^3, ... where i is prime and store in cache[]
unsigned long long power = i * (unsigned long long) i;
for (unsigned int exponent = 2; power <= limit; exponent++)
{
// optimized version of naive(), skip i numbers in each iteration
unsigned long long factorial = i;
unsigned int result = i;
do
{
result += i;
factorial *= result;
factorial %= power;
} while (factorial % power != 0);
cache[power] = result;
// next exponent
power *= i;
}
// s(prime) = prime
sum += i;
}
else
{
// compute s(non prime)
sum += getSmallestFactorial(i);
}
}
// and display the result
std::cout << sum << std::endl;
return 0;
}