-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0565.cpp
339 lines (296 loc) · 11.2 KB
/
euler-0565.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// ////////////////////////////////////////////////////////
// # Title
// Divisibility of sum of divisors
//
// # URL
// https://projecteuler.net/problem=565
// http://euler.stephan-brumme.com/565/
//
// # Problem
// Let `sigma(n)` be the sum of the divisors of `n`.
// E.g. the divisors of 4 are 1, 2 and 4, so `sigma(4)=7`.
//
// The numbers `n` not exceeding 20 such that 7 divides `sigma(n)` are: 4,12,13 and 20, the sum of these numbers being 49.
//
// Let `S(n,d)` be the sum of the numbers `i` not exceeding `n` such that `d` divides `sigma(i)`.
// So `S(20,7)=49`.
//
// You are given: `S(10^6,2017)=150850429` and `S(10^9,2017)=249652238344557`
//
// Find `S(10^11,2017)`.
//
// # Solved by
// Stephan Brumme
// December 2017
//
// # Algorithm
// The Wikipedia page about the Divisor Function has a few useful formulas (see https://en.wikipedia.org/wiki/Divisor_function ):
// (1) `\sigma_1(p) = p + 1` if `p` is prime
//
// (2) `\sigma_1(p^k) = dfrac{p^{k+1} - 1}{p - 1}` if `p` is prime
//
// (3) `\sigma_1(m * n) = \sigma_1(m) * \sigma_1(n)` if `m` and `n` are coprime
//
// The most crucial observation is that if `\sigma_1(m)` is divisible by 2017, then according to (3) almost every multiple is, too
// (the exception is when `m` and `n` are not coprime, for example for `m = n`).
//
// My function ''search()'' starts with equation (2) (and `k >= 2`) because there are only few such numbers.
// I check for every prime whether `\sigma_1(p^k) = dfrac{p^{k+1} - 1}{p - 1}` is a multiple of 2017.
// If yes, then that number including all its multiples (except every `p`-th multiple) has a divisor sum that is divisible by 2017.
// Since `p^2 <= 10^11` less than a million number have to be checked which is done in less than a second.
//
// Much more computation time is spent on equation (1):
// every prime `p` where `p+1` is a multiple of 2017 and its multiples have a matching divisor sum.
// Instead of finding all primes below `10^11` I check every number `2017k - 1` whether it is prime.
// The Miller-Rabin test from my [toolbox](/toolbox/) is pretty fast but I had to include a GCC optimization to stay below one minute execution time.
//
// A substantial part of my code is devoted to detecting duplicates: a few number are found multiple times.
// For example 12101 is the smallest prime where `\sigma_1` is divisible by 2017. The next prime is 24203.
// Their product 12101 * 24203 = 292880503 will be found while processing all multiples of 12101 and then again while processing all multiples of 24203.
// The container ''found'' is a simple ''std::vector'' because it has pretty much zero data structure overhead (unlike ''std::set'').
//
// Duplicates (or a "collision") is impossible for the first 12101-1=12100 multiples of a matching prime (since 12101 is the smallest).
// To keep my code more generic I simplified that idea and only assume that a collision is impossible for the first 2017-1=2016 multiple.
// If the current prime `p` is larger than `sqrt{10^11}` then a collision can only occur if the multiple was seen before because it must be smaller than `p.
// Therefore I sort the list of primes found so far and perform a lookup with binary search.
// All these optimizations have only one goal: reduce the size of ''found'' until it drops below the 256 MByte limit.
//
// When all primes are processed then ''found'' is sorted again to eliminate all duplicates with ''std::unique''.
//
// # Note
// I had the solution pretty fast but my code needed about 6 minutes and almost 2 GByte RAM.
// Most of the time was spent optimizing the code (e.g. refactor from ''std::set'' to ''std::vector'').
// And while optimizing, I "broke" the algorithm quite a few times ...
//
// Right now my solution has still high memory consumption and execution time.
// It's by far the highest ranking [expensive solution](/performance/#slowandbig) which doesn't exceed the memory or CPU limits.
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
// ---------- mulmod, powmod and Miller-Rabin test from my toolbox ----------
// return (a*b) % modulo
unsigned long long mulmod(unsigned long long a, unsigned long long b, unsigned long long modulo)
{
// (a * b) % modulo = (a % modulo) * (b % modulo) % modulo
a %= modulo;
b %= modulo;
// fast path
if (a <= 0xFFFFFFF && b <= 0xFFFFFFF)
return (a * b) % modulo;
#ifdef __GNUC__
// based on GCC's 128 bit implementation
return ((unsigned __int128)a * b) % modulo;
#endif
// we might encounter overflows (slow path)
// the number of loops depends on b, therefore try to minimize b
if (b > a)
std::swap(a, b);
// bitwise multiplication
unsigned long long result = 0;
while (a > 0 && b > 0)
{
// b is odd ? a*b = a + a*(b-1)
if (b & 1)
{
result += a;
if (result >= modulo)
result -= modulo;
// skip b-- because the bit-shift at the end will remove the lowest bit anyway
}
// b is even ? a*b = (2*a)*(b/2)
a <<= 1;
if (a >= modulo)
a -= modulo;
// next bit
b >>= 1;
}
return result;
}
// return (base^exponent) % modulo => simple implementation
unsigned long long powmod(unsigned long long base, unsigned long long exponent, unsigned long long modulo)
{
unsigned long long result = 1;
while (exponent > 0)
{
// fast exponentation:
// odd exponent ? a^b = a*a^(b-1)
if (exponent & 1)
result = mulmod(result, base, modulo);
// even exponent ? a^b = (a*a)^(b/2)
base = mulmod(base, base, modulo);
exponent >>= 1;
}
return result;
}
// Miller-Rabin-test
bool isPrime(unsigned long long p)
{
// IMPORTANT: requires mulmod(a, b, modulo) and powmod(base, exponent, modulo)
// some code from https://ronzii.wordpress.com/2012/03/04/miller-rabin-primality-test/
// with optimizations from http://ceur-ws.org/Vol-1326/020-Forisek.pdf
// good bases can be found at http://miller-rabin.appspot.com/
// trivial cases
const unsigned int bitmaskPrimes2to31 = (1 << 2) | (1 << 3) | (1 << 5) | (1 << 7) |
(1 << 11) | (1 << 13) | (1 << 17) | (1 << 19) |
(1 << 23) | (1 << 29); // = 0x208A28Ac
if (p < 31)
return (bitmaskPrimes2to31 & (1 << p)) != 0;
if (p % 2 == 0 || p % 3 == 0 || p % 5 == 0 || p % 7 == 0 || // divisible by a small prime
p % 11 == 0 || p % 13 == 0 || p % 17 == 0)
return false;
if (p < 17 * 19) // we filtered all composite numbers < 17*19, all others below 17*19 must be prime
return true;
// test p against those numbers ("witnesses")
// good bases can be found at http://miller-rabin.appspot.com/
const unsigned int STOP = 0;
const unsigned int TestAgainst1[] = { 377687, STOP };
const unsigned int TestAgainst2[] = { 31, 73, STOP };
const unsigned int TestAgainst3[] = { 2, 7, 61, STOP };
// first three sequences are good up to 2^32
const unsigned int TestAgainst4[] = { 2, 13, 23, 1662803, STOP };
const unsigned int TestAgainst7[] = { 2, 325, 9375, 28178, 450775, 9780504, 1795265022, STOP };
// good up to 2^64
const unsigned int* testAgainst = TestAgainst7;
// use less tests if feasible
if (p < 5329)
testAgainst = TestAgainst1;
else if (p < 9080191)
testAgainst = TestAgainst2;
else if (p < 4759123141ULL)
testAgainst = TestAgainst3;
else if (p < 1122004669633ULL)
testAgainst = TestAgainst4;
// find p - 1 = d * 2^j
auto d = p - 1;
d >>= 1;
unsigned int shift = 0;
while ((d & 1) == 0)
{
shift++;
d >>= 1;
}
// test p against all bases
do
{
auto x = powmod(*testAgainst++, d, p);
// is test^d % p == 1 or -1 ?
if (x == 1 || x == p - 1)
continue;
// now either prime or a strong pseudo-prime
// check test^(d*2^r) for 0 <= r < shift
bool maybePrime = false;
for (unsigned int r = 0; r < shift; r++)
{
// x = x^2 % p
// (initial x was test^d)
x = mulmod(x, x, p);
// x % p == 1 => not prime
if (x == 1)
return false;
// x % p == -1 => prime or an even stronger pseudo-prime
if (x == p - 1)
{
// next iteration
maybePrime = true;
break;
}
}
// not prime
if (!maybePrime)
return false;
} while (*testAgainst != STOP);
// prime
return true;
}
// ---------- problem-specific code ----------
// much faster ... but still takes a few seconds
unsigned long long search(unsigned long long limit, unsigned int multiple)
{
std::vector<unsigned long long> found;
// avoid re-allocations for limit = 10^11
if (limit == 100000000000ULL)
found.reserve(26240000);
// find primes where sigma(prime^2) is divisible by 2017 (same for sigma(prime^3), ...)
for (unsigned long long p = 2; p*p <= limit; p++)
{
if (!isPrime(p))
continue;
// at least p^2
auto power = p * p;
while (power <= limit)
{
// sigma = (p^q - 1) / (p - 1)
auto sigma = (power*p - 1) / (p - 1);
if (sigma % multiple == 0)
// including all multiples
for (auto i = 1; i*power <= limit; i++)
if (i % p != 0) // avoid the case where i is a multiple of p because then they aren't coprime anymore
found.push_back(i*power);
// next iteration will exceed limit ?
if (limit / power < p)
break;
// keep going ...
power *= p;
}
}
// sum of all matches
unsigned long long result = 0;
// switch to "optimized" mode if p^2 > limit
size_t sortedSize = 0;
// sigma(prime) = prime + 1
// => check all numbers 2017k - 1 whether they are prime
for (unsigned long long p = multiple - 1; p <= limit; p += multiple)
{
// only primes ...
if (!isPrime(p))
continue;
// "optimized" mode:
// collisions can only occur when multiplying p by a smaller prime which must be part of the "found" container
if (sortedSize == 0 && p*p > limit)
{
// sort all solutions so that I can search for elements with std::binary_search
std::sort(found.begin(), found.end());
sortedSize = found.size();
}
// sigma(p) is a multiple of 2017 and that's also true for all its multiples
for (unsigned long long i = 1; i*p <= limit; i++)
{
// avoid the case where i is a multiple of p because then they aren't coprime anymore
if (i % p == 0)
continue;
// another solution (which might be a duplicate, though !)
auto current = i * p;
// if i is small then a collision is impossible
if (i < multiple - 1)
{
result += current;
continue;
}
// I can detect collisions immediately if p > sqrt(limit) because then p > i
if (sortedSize > 0)
{
if (!std::binary_search(found.begin(), found.begin() + sortedSize, current))
result += current;
}
else
// potential collision
found.push_back(current);
}
}
// exclude duplicates
std::sort(found.begin(), found.end());
auto duplicates = std::unique(found.begin(), found.end());
// sum of all found numbers (but count duplicates only once)
for (auto i = found.begin(); i != duplicates; i++)
result += *i;
return result;
}
int main()
{
unsigned long long limit = 100000000000ULL; // 10^11
unsigned int multiple = 2017;
std::cin >> limit >> multiple;
std::cout << search(limit, multiple) << std::endl;
return 0;
}