-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0613.cpp
207 lines (194 loc) · 8.22 KB
/
euler-0613.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// ////////////////////////////////////////////////////////
// # Title
// Pythagorean Ant
//
// # URL
// https://projecteuler.net/problem=613
// http://euler.stephan-brumme.com/613/
//
// # Problem
// Dave is doing his homework on the balcony and, preparing a presentation about Pythagorean triangles,
// has just cut out a triangle with side lengths 30cm, 40cm and 50cm from some cardboard, when a gust of wind blows the triangle down into the garden.
// Another gust blows a small ant straight onto this triangle.
// The poor ant is completely disoriented and starts to crawl straight ahead in random direction in order to get back into the grass.
//
// Assuming that all possible positions of the ant within the triangle and all possible directions of moving on are equiprobable,
// what is the probability that the ant leaves the triangle along its longest side?
// Give your answer rounded to 10 digits after the decimal point.
//
// # Solved by
// Stephan Brumme
// November 2017
//
// # Algorithm
// The side lengths 30, 40 and 50 sound familiar: yes, it's a triangle with a right angle.
// Since the size of the triangle doesn't affect the way the ant can move, I replaced it by a simpler 3,4,5 triangle.
//
// Furthermore, let's assume that the triangles landed in such a way that
// - the side `a=3` aligned with the x-axis of a virtual coordinate system.
// - the side `b=4` aligned with the y-axis of a virtual coordinate system.
// - the ant is at point `P`
//
// So it looks like this:
//
// <![CDATA[
// <svg width="10em" height="10em">
// <line x1= "1%" y1= "1%" x2= "1%" y2="99%" stroke="black" stroke-width="1" />
// <line x1= "1%" y1="99%" x2="75%" y2="99%" stroke="black" stroke-width="1" />
// <line x1= "1%" y1= "1%" x2="75%" y2="99%" stroke="black" stroke-width="1" />
// <text x= "3%" y="50%" style="font-size: 1em">a</text>
// <text x="30%" y="97%" style="font-size: 1em">b</text>
// <text x="30%" y="55%" style="font-size: 1em">c</text>
//
// <text x="20%" y="75%" style="font-size: 1em" fill="red">P</text>
// </svg>
// ]]>
//
// If I know the coordinates of `P` then I can compute the probability the the ant exits along the side `c`:
// if the ant chooses any direction within the angle `gamma` then that probabiltiy is `gamma / 2 pi`
//
// <![CDATA[
// <svg width="10em" height="10em">
// <line x1= "1%" y1= "1%" x2= "1%" y2="99%" stroke="black" stroke-width="1" />
// <line x1= "1%" y1="99%" x2="75%" y2="99%" stroke="black" stroke-width="1" />
// <line x1= "1%" y1= "1%" x2="75%" y2="99%" stroke="black" stroke-width="1" />
//
// <line x1= "1%" y1= "1%" x2="20%" y2="75%" stroke="red" stroke-width="1" />
// <line x1="75%" y1="99%" x2="20%" y2="75%" stroke="red" stroke-width="1" />
// <text x="20%" y="75%" style="font-size: 1em" fill="red">P</text>
//
// <line x1= "1%" y1="75%" x2="20%" y2="75%" stroke="gray" stroke-width="1" />
// <line x1="20%" y1="99%" x2="20%" y2="75%" stroke="gray" stroke-width="1" />
// <text x= "1%" y="25%" style="font-size: 1em" fill="gray">α</text>
// <text x="55%" y="97%" style="font-size: 1em" fill="gray">β</text>
// <text x="30%" y="70%" style="font-size: 1em" fill="gray">γ</text>
// </svg>
// ]]>
//
// The angles `alpha` and `beta` can be derived from the coordinates `P(x,y)`:
// (1) `tan(alpha) = dfrac{x}{b - y}`
// (2) `tan(beta) = dfrac{y}{a - x}`
//
// Solving for `alpha` and `beta`:
// (3) `alpha = arctan(dfrac{x}{b - y})`
// (4) `beta = arctan(dfrac{y}{a - x})`
//
// That's exactly what the functions ''getAlpha'' and ''getBeta'' do.
//
// The third angle `gamma` is based solely on `alpha` and `beta`:
// - the sum of all angles around the point `P` is always `2 pi` (=`360^{\circ}`)
// - all angles in any triangle sum to `pi`
// - a right angle equals `frac{pi}{2}`
// - so the angle "below" `P` is `pi - frac{pi}{2} - alpha = frac{pi}{2} - alpha`
// - so the angle "on the left side" of `P` is `pi - frac{pi}{2} - beta = frac{pi}{2} - beta`
// Therefore
// (5) `2 pi = gamma + (frac{pi}{2} - alpha) + (frac{pi}{2} - beta) + frac{pi}{2}`
// (6) `gamma = 2 pi - (frac{pi}{2} - alpha) - (frac{pi}{2} - beta) - frac{pi}{2}`
// (7) `gamma = frac{pi}{2} + alpha + beta`
//
// And the probability is (as mentioned before):
// (8) `f(x,y) = dfrac{gamma}{2 pi}`
//
// (9) `f(x,y) = dfrac{1}{2 pi} * (dfrac{pi}{2} + arctan(dfrac{x}{b - y}) + arctan(dfrac{y}{a - x}))`
//
// The average value `f(x,y)` of all points `(x,y)` on the triangle's surface will be the answer to the problem.
//
// However, I couldn't find a fast and reliable way to do it in C++ (without external libraries).
// The code you see below is good for the first four digits - but I need to provide ten accurate digits.
//
// That's when I started playing around with Wolfram Alpha:
// - the integral `\int{\int{f(x,y)}dx}dy` divided by the triangle's area `dfrac{3 * 4}{2} = 6` is the exact answer
//
// - and Wolfram Alpha simplified that to `0.5 + log((2^16 3^4 sqrt{3/5})/5^12) / 12 pi` - I would have never found that formula !
//
// - evaluating the equation gives the correct result, even in C++ ...
//
// # Note
// I always strive to put all tools needed to solve a problem into a single C++ file.
// This time my C++ code is basically useless because an external tool (Wolfram Alpha) condensed the whole solution to a single equation.
// Therefore I don't like this problem at all - I found the right approach to the problem and just couldn't take the last step because
// it required wizardry that is wildly outside my capabilities.
// Reading the forums it appears that 95% of all solvers walked the same path and relied on Mathematica or similar tools.
#include <iostream>
#include <iomanip>
#include <cmath>
// triangle (same shape as 30,40,50 !)
const double a = 3; // shortest leg
const double b = 4; // longest leg
const double c = 5; // hypotenuse
// |\.
// | \.
// | \.
// b c
// | \.
// | \.
// +--a-\.
const double PI = 3.1415926535897932384626433832795028;
// compute angle in upper left corner
double getAlpha(double x, double y)
{
// tan(alpha) = opposite / adjacent = X / Y
// alpha = arctan(X / Y)
// where X = x and Y = b - y
return atan(x / (b - y));
}
// compute angle in lower right corner
double getBeta(double x, double y)
{
// similar to getAlpha:
// tan(beta) = opposite / adjacent = Y / X
// beta = arctan(Y / X)
// where X = a - x and Y = y
return atan(y / (a - x));
}
// return probability of leaving the triangle
double getProbability(double x, double y)
{
// the of all angles in a triangle is pi:
// pi = otherAlpha + otherBeta + gamma
// but the big triangle must fulfil the same condition, so
// pi = alpha + otherAlpha + beta + otherBeta + pi/2
// therefore the difference is
// 0 = gamma - alpha - beta - pi/2
// gamme = alpha + beta + pi/2
auto gamma = PI/2 + getAlpha(x, y) + getBeta(x, y);
// each direction is equally likely: "exit probability" = gamma / full circle
// and a full circle has 360 degrees => 2pi
return gamma / (2 * PI);
}
int main()
{
// display 10 digits
std::cout << std::fixed << std::setprecision(10);
double epsilon = 0.01;
//std::cin >> epsilon;
// add all percentages
double sum = 0;
unsigned long long numPoints = 0;
for (double x = epsilon; x < a; x += epsilon)
{
auto height = b - x * b/a;
for (double y = epsilon; y < height; y += epsilon)
{
auto current = getProbability(x, y);
sum += current;
numPoints++;
//if (numPoints % 10000000 == 0)
//std::cout << numPoints << std::endl;
}
}
// compute average percentage
auto result = sum / numPoints;
// ==> uncomment the following line to see my approximate result
//std::cout << result << std::endl;
// I reduced the triangle's dimensions from 30,40,50 to 3,4,5 (doesn't affect the probability)
// and Wolfram Alpha double-integrated to
// 0.5 + log((2^16 3^4 sqrt(3/5))/5^12) / 12pi
// (actually Wolfram Alpha's output contained large numbers: 5308416 = 2^16 3^4 and 244140625 = 5^12)
// I have no clue how Wolfram Alpha found that strange equation
// but the resulting value matched my approximation and it's indeed correct
result = 0.5 + log((pow(2, 16) * pow(3, 4) * sqrt(3.0 / 5)) / pow(5, 12)) / (12*PI);
// and here comes the accurate result
std::cout << result << std::endl;
return 0;
}