-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwhorl_pose_detect.py
147 lines (116 loc) · 6.64 KB
/
whorl_pose_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
####################################################################################################################################
# Import libraries
import os, glob
import pandas as pd
import numpy as np
import io
import laspy
from PIL import Image
import re
from scipy.spatial import cKDTree
import concurrent.futures
import matplotlib
matplotlib.use('Agg') # Use Agg backend for non-GUI rendering
import matplotlib.pyplot as plt
import ultralytics
from ultralytics import YOLO
# import my own functions
from tools import rotate_point_cloud,slice_tree_center_thick_slices,plot_to_image,plot_section_as_image_with_alpha
from tools import convert_to_real_world,process_file,calculate_angle_at_p2,calculate_distance,pose_detection_tree
from tools import convert_sections_to_images,process_point_cloud,get_image_size
####################################################################################################################################
# directory to where YOLO temp predictions are stored
dir_root="data" # path to root folder where .las/.laz files are stored
# alpha for plotting
alpha= 0.5
# minimum distance between whorls (used to remove duplicates)
min_internodal_d= 0.3 # in m (it can be set to something like 0.01 to allow the full output to post-process later)
# pose model
my_model="whorl_pose_nano_1000px/weights/best.pt"
# label for the column with tree instance unique identifiers
tree_id_label='treeID'
# label for the column with semantic labels (non required)
semantic_label='semantic'
####################################################################################################################################
# files_to_process= list_las_laz_files(dir_root)
# Find all .las and .laz files in the root folder
las_files = glob.glob(os.path.join(dir_root, '*.las'))
laz_files = glob.glob(os.path.join(dir_root, '*.laz'))
# Combine the lists of files
all_files = las_files + laz_files
all_files
# Iterate through all *.las/*.laz files in root folder
for filename in all_files:
print("Starting pose estimation for all trees in: "+ filename)
####################################################################################################################################
# define inner directories
dir_output = os.path.join(dir_root, "results") # path to where to store the final results
dir_pred = os.path.join(dir_root, "pred_temp") # temp path to where to store the intermediate prediction
dir_temp_imgs = os.path.join(dir_pred, "orig_imgs") # Further subdirectories within 'dir_pred'
# Ensure directories exist without throwing an error if they already do
os.makedirs(dir_pred, exist_ok=True)
os.makedirs(dir_output, exist_ok=True)
os.makedirs(dir_temp_imgs, exist_ok=True)
####################################################################################################################################
# Read in the forest segmented data
print("Reading in lidar data........................................................................................................")
# Read in the forest segmented data
las = laspy.read(filename)
# convert to a numpy array
las_np = np.vstack((las.x, las.y, las.z, getattr(las, tree_id_label), getattr(las, semantic_label))).transpose()
# split tree/non-tree (assumes that the semantic label corresponds to 0 if it's not a tree and 1 if it is a tree)
trees= las_np[getattr(las, semantic_label)!=0]
non_tree= las_np[getattr(las, semantic_label)==0]
# Now, modifying the loop to use parallel execution
unique_treeIDs = np.unique(trees[:,3])
results = []
####################################################################################################################################
# Whorl detection in parallel for all trees in the las file
print("Whorl detection..............................................................................................................")
# Parallel individual tree whorl pose detection
unique_treeIDs = np.unique(getattr(las, tree_id_label))
results = []
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
# Submitting tasks to the executor
future_to_treeID = {
executor.submit(
pose_detection_tree,
treeID=treeID, # Pass treeID as a keyword argument
trees=trees,
non_tree=non_tree,
dir_root=dir_root,
my_model=my_model,
dir_pred=dir_pred,
min_dist_whorls=min_internodal_d # Pass min_dist_whorls as a keyword argument
): treeID
for treeID in unique_treeIDs
}
# Collecting results as they complete
for future in concurrent.futures.as_completed(future_to_treeID):
treeID = future_to_treeID[future]
try:
data = future.result()
if data is not None:
results.append(data)
except Exception as exc:
print(f'TreeID {treeID} generated an exception: {exc}')
####################################################################################################################################
# Post-processing the results
# Creating a dictionary mapping treeID to its result
results_dict = {result['treeID']: result['result'] for result in results if result is not None}
# Merging the 'whorl_pc' DataFrames from each result
whorls_pc_dfs = [result['whorl_pc'] for result in results if result is not None and 'whorl_pc' in result]
whorld_df = pd.concat(whorls_pc_dfs, ignore_index=True)
# correct z
whorld_df.loc[whorld_df['branch_opening_angle'] == 0, 'z'] = whorld_df['world_pz2']
# remove negative whorls
whorld_df= whorld_df[whorld_df['world_pz2']>=0]
# write out the output
whorld_df.to_csv(dir_output+'/'+os.path.splitext(os.path.basename(filename))[0]+'_'+str(round(min_internodal_d*100))+'cmThresh_whorls_pc_HKL2model.csv', index=False)
####################################################################################################################################
# Write outputs
whorld_df.to_csv(dir_output+'/'+os.path.splitext(os.path.basename(filename))[0]+'_whorls_pc.csv', index=False)
####################################################################################################################################
# Cleanup temp files
import shutil
shutil.rmtree(dir_pred)