-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGAN3D_HS.py
354 lines (263 loc) · 14.3 KB
/
GAN3D_HS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import argparse
import datetime
import logging
import os
import cv2
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Input, Conv3D, Conv2DTranspose, Conv3DTranspose, multiply, Embedding, BatchNormalization, LeakyReLU, Flatten, Dense, Reshape, Activation, Dropout
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import to_categorical
import numpy as np
from utils.load_data import load_data, split_data, create_image_cube
from utils.metrics import reports, save_report, read_report, visualize_report
from utils.visualization import RGBImage
import wandb
from PIL import Image
import tensorflow as tf
class GAN3D_HS():
def __init__(self, input_shape, num_classes, latent_dim, checkpoint_dir):
# Input shape
self.input_shape = input_shape
self.num_classes = num_classes
self.latent_dim = latent_dim
self.checkpoint_dir = checkpoint_dir
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
optimizer = Adam(lr=0.0002, beta_1=0.5)
losses = ['binary_crossentropy', 'sparse_categorical_crossentropy']
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss=losses,
optimizer=optimizer,
metrics=['accuracy'])
self.generator = self.build_generator()
# The generator takes noise and the target label as input
# and generates the corresponding digit of that label
noise = Input(shape=(self.latent_dim,))
label = Input(shape=(1,))
img = self.generator([noise, label])
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The discriminator takes generated image as input and determines validity
# and the label of that image
valid, target_label = self.discriminator(img)
# The combined model (stacked generator and discriminator)
# Trains the generator to fool the discriminator
self.combined = Model([noise, label], [valid, target_label])
self.combined.compile(loss=losses,
optimizer=optimizer)
def build_generator(self):
model = Sequential()
model.add(Dense(9 * 9 * 2 * 128, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((9, 9, 2, 128)))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv3DTranspose(128, kernel_size=(5, 5, 5), strides=(1, 1, 5), padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv3DTranspose(64, kernel_size=(5, 5, 5), strides=(1, 1, 5), padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv3DTranspose(1, kernel_size=(3, 3, 5), strides=(1, 1, 4), padding="same"))
model.add(Activation("tanh"))
model.summary()
noise = Input(shape=(self.latent_dim,))
label = Input(shape=(1,), dtype='int32')
label_embedding = Flatten()(Embedding(self.num_classes, self.latent_dim)(label))
model_input = multiply([noise, label_embedding])
img = model(model_input)
return Model([noise, label], img)
def build_discriminator(self):
model = Sequential()
# model.add(Conv3D(64, kernel_size=(3, 3, 32), strides=(1, 1, 8), input_shape=self.input_shape, padding="same"))
# model.add(LeakyReLU(alpha=0.2))
# model.add(Conv3D(128, kernel_size=(3, 3, 16), strides=(3, 3, 4), padding="same"))
# model.add(LeakyReLU(alpha=0.2))
# model.add(Dropout(0.25))
# model.add(BatchNormalization(momentum=0.8))
# model.add(Conv3D(256, kernel_size=(3, 3, 8), strides=(3, 3, 2), padding="same"))
# model.add(LeakyReLU(alpha=0.2))
# model.add(Dropout(0.25))
# model.add(BatchNormalization(momentum=0.8))
model.add(Conv3D(32, kernel_size=(3, 3, 7), strides=(1, 1, 1), input_shape=self.input_shape, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv3D(64, kernel_size=(3, 3, 5), strides=(1, 1, 1), padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv3D(128, kernel_size=(3, 3, 3), strides=(1, 1, 1), padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Flatten())
model.summary()
img = Input(shape=self.input_shape)
# Extract feature representation
features = model(img)
# Determine validity and label of the image
validity = Dense(1, activation="sigmoid")(features)
label = Dense(self.num_classes, activation="softmax")(features)
return Model(img, [validity, label])
def train(self, x_train, y_train, epochs, batch_size, save_interval = 50, run_name='GAN3D_HS'):
wandb.init(project='GAN3D_HS', name=run_name)
wandb.config.update({"epochs": epochs, "batch_size": batch_size})
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
best_op_acc_val = float('inf')
num_batches = int(x_train.shape[0] / batch_size)
for epoch in range(epochs):
for batch_idx in range(num_batches):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random batch of data
idx = np.random.randint(0, x_train.shape[0], batch_size)
real_data = x_train[idx]
# Sample noise as generator input
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
# The labels of the digits that the generator tries to create an
# image representation of
fake_labels = np.random.randint(0, self.num_classes, batch_size)
# Generate a half batch of new images
fake_data = self.generator.predict([noise, fake_labels])
# Image labels. 0-9
real_labels = y_train[idx]
# Train the discriminator
d_loss_real = self.discriminator.train_on_batch(real_data, [valid, real_labels])
d_loss_fake = self.discriminator.train_on_batch(fake_data, [fake, fake_labels])
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
# Train the generator
g_loss = self.combined.train_on_batch([noise, fake_labels], [valid, fake_labels])
# Plot the progress
print ("Training Metrics: %d [D loss: %f, acc.: %.2f%%, op_acc: %.2f%%] [D loss fake: %f, acc.: %.2f%%, op_acc: %.2f%%] [D loss real: %f, acc.: %.2f%%, op_acc: %.2f%%] [G loss: %f] " \
% (epoch, d_loss[0], 100*d_loss[3], 100*d_loss[4], \
d_loss_fake[0], 100*d_loss_fake[3], 100*d_loss_fake[4], \
d_loss_real[0], 100*d_loss_real[3], 100*d_loss_real[4], \
g_loss[0]))
wandb.log({
'D_loss': d_loss[0],
# 'D_acc': 100 * d_loss[3],
'D_op_acc': d_loss[4],
'G_loss': g_loss[0],
'D_fake_loss': d_loss_fake[0],
'D_fake acc': 100*d_loss_fake[3],
'D_fake_op_acc': 100*d_loss_fake[4],
'D_real_loss': d_loss_real[0],
'D_real acc': 100*d_loss_real[3],
'D_real_op_acc': 100*d_loss_real[4]
})
# Evaluate on the validation set
# idx_val = np.random.randint(0, x_test.shape[0], batch_size)
# real_data_val = x_test[idx_val]
real_data_val = x_test
# real_labels_val = y_test[idx_val]
real_labels_val = y_test
d_loss_val = self.discriminator.evaluate(real_data_val, [valid, real_labels_val], verbose=0)
g_loss_val = self.combined.evaluate([noise, fake_labels], [valid, fake_labels], verbose=0)
print("Validation Metrics: %d [D loss: %f, acc.: %.2f%%, op_acc: %.2f%%] [G loss: %f]" % (epoch, d_loss_val[0], 100 * d_loss_val[3], 100 * d_loss_val[4], g_loss_val[0]))
wandb.log({
'D_loss_val': d_loss_val[0],
# 'D_acc_val': 100 * d_loss_val[3],
'D_op_acc_val': d_loss_val[4],
'G_loss_val': g_loss_val[0]
})
# If at save interval => save generated image samples
if epoch % save_interval == 0:
self.save_model(epoch)
if d_loss_val[4] < best_op_acc_val:
best_op_acc_val = d_loss_val[4]
self.save_best_model()
wandb.finish()
def save_model(self, epoch):
def save(model, model_name, epoch):
weights_path = os.path.join(self.checkpoint_dir, "%s_%d.hdf5" % (model_name, epoch))
model.save_weights(weights_path)
# save(self.generator, "G", epoch)
save(self.discriminator, "D", epoch)
def save_best_model(self):
weights_path = os.path.join(self.checkpoint_dir, "%s_best.hdf5" % ("D"))
self.discriminator.save_weights(weights_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# parser.add_argument('--learning_rate', type=float, default=0.001, help='学习率')
parser.add_argument('--num_epochs', type=int, default=400, help='训练轮数')
parser.add_argument('--batch_size', type=int, default=512, help='批次大小')
parser.add_argument('--dataset', type=str, default='indian_pines', choices=['indian_pines', 'salinas'], help='选择要使用的数据集')
parser.add_argument('--num_components', type=int, default=3, help='PCA 降维后的维度')
parser.add_argument('--preprocess', type=str, default='standard', choices=['minmax', 'standard', 'none'], help='数据预处理方式')
parser.add_argument('--train_percent', default=0.15, type=float, help='训练集比例')
parser.add_argument('--repeat', default=1, type=int, help='实验重复次数')
# parser.add_argument('--use_val', action='store_true', default=True, help='使用验证集')
# parser.add_argument('--val_percent', default=0.1, type=float, help='验证集比例(验证集从测试集中划分)')
parser.add_argument('--save_interval', type=int, default=50, help='保存模型的间隔')
parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints/GAN3D_HS', help='保存模型的目录')
parser.add_argument('--random_state', type=int, default=42, help='随机数种子')
parser.add_argument('--spatial_size', default=9, type=int, help='构建数据立方体时采用的窗口大小')
parser.add_argument('--use_gpu', action='store_true', default=True, help='使用 GPU 训练')
parser.add_argument('--test_only', action='store_true', default=False, help='只测试模型')
args = parser.parse_args()
# 初始化日志
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
# 只使用第二个GPU设备
try:
tf.config.experimental.set_visible_devices(gpus[1], 'GPU')
except RuntimeError as e:
print(e)
else:
print("no GPU")
# 1 数据预处理
# 加载数据集
data_ori, label_ori, num_classes = load_data(args.dataset, preprocessing=args.preprocess)
data_ori, label_ori = create_image_cube(data_ori, label_ori, window_size=args.spatial_size, remove_zero_labels = False)
# # 0 代表背景,不参与训练
data = data_ori[label_ori!=0]
label = label_ori[label_ori!=0] - 1
for pos in range(args.repeat):
save_path = os.path.join(args.checkpoint_dir, str(pos))
test_percent = 1 - args.train_percent
x_train, x_test, y_train, y_test = split_data(data, label,
test_percent=test_percent,
random_state=args.random_state + pos)
x_test = x_test[..., np.newaxis]
x_train = x_train[..., np.newaxis]
# 输出训练集和测试集的形状和训练设置
logging.info(f'x_train shape: {x_train.shape}')
logging.info(f'y_train shape: {y_train.shape}')
logging.info(f'x_test shape: {x_test.shape}')
logging.info(f'y_test shape: {y_test.shape}')
input_shape = x_train.shape[1:]
latent_dim = 100
run_name = f'GAN3D_HS_{args.dataset}_b{args.batch_size}_e{args.num_epochs}_w{args.spatial_size}_n{pos}'
if not args.test_only:
# 训练部分
GAN = GAN3D_HS(input_shape, num_classes, latent_dim, checkpoint_dir=save_path)
GAN.train(x_train, y_train, args.num_epochs, args.batch_size, args.save_interval, run_name = run_name)
# 测试部分
# del GAN
GAN_D = GAN3D_HS(input_shape, num_classes, latent_dim, checkpoint_dir=save_path).discriminator
GAN_D.load_weights(os.path.join(save_path, 'D_best.hdf5'))
_, y_pred = GAN_D.predict(x_test)
report = reports(np.argmax(y_pred, axis=1), y_test)
save_report(*report, save_path)
# Read the report from the CSV file
report_dict = read_report(save_path)
# Visualize the report in Python
visualize_report(report_dict)
# 生成预测图像
_, y_pred = GAN_D.predict(data_ori[..., np.newaxis])
image_pred = np.argmax(y_pred, axis=1).reshape(145,145)
# 将背景像素设置为0,分类标签从1开始
label_ori = label_ori.reshape(145,145)
image_pred += 1
image_pred[ label_ori == 0] = 0
rgb_pred = RGBImage(image_pred)
rgb_true = RGBImage(label_ori)
img_rgb_pred = Image.fromarray(np.uint8(rgb_pred))
img_rgb_true = Image.fromarray(np.uint8(rgb_true))
img_rgb_pred.save(os.path.join(save_path, "y_pred.png"))
img_rgb_true.save(os.path.join(save_path, "y_true.png"))