Skip to content

Latest commit

 

History

History
86 lines (76 loc) · 5.01 KB

README.md

File metadata and controls

86 lines (76 loc) · 5.01 KB

BERT Extension

BERT (Bidirectional Encoder Representations from Transformers) is a generalized autoencoding pretraining method proposed by Google AI Language team, which obtains new state-of-the-art results on 11 NLP tasks ranging from question answering, natural, language inference and sentiment analysis. BERT is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers, which allows it to be easily finetuned for downstream tasks without substantial task-specific architecture modifications. This project is aiming to provide extensions built on top of current BERT and bring power of BERT to other NLP tasks like NER and NLU.

Figure 1: Illustrations of fine-tuning BERT on different tasks

Setting

  • Python 3.6.7
  • Tensorflow 1.13.1
  • NumPy 1.13.3

DataSet

  • CoNLL2003 is a multi-task dataset, which contains 3 sub-tasks, POS tagging, syntactic chunking and NER. For NER sub-task, it contains 4 types of named entities: persons, locations, organizations and names of miscellaneous entities that do not belong to the previous three groups.
  • ATIS (Airline Travel Information System) is NLU dataset in airline travel domain. The dataset contains 4978 train and 893 test utterances classified into one of 26 intents, and each token in utterance is labeled with tags from 128 slot filling tags in IOB format.

Usage

  • Preprocess data
python prepro/prepro_conll.py \
  --data_format json \
  --input_file data/ner/conll2003/raw/eng.xxx \
  --output_file data/ner/conll2003/xxx-conll2003/xxx-conll2003.json
  • Run experiment
CUDA_VISIBLE_DEVICES=0 python run_ner.py \
    --task_name=conll2003 \
    --do_train=true \
    --do_eval=true \
    --do_predict=true \
    --do_export=true \
    --data_dir=data/ner/conll2003 \
    --vocab_file=model/cased_L-12_H-768_A-12/vocab.txt \
    --bert_config_file=model/cased_L-12_H-768_A-12/bert_config.json \
    --init_checkpoint=model/cased_L-12_H-768_A-12/bert_model.ckpt \
    --max_seq_length=128 \
    --train_batch_size=32 \
    --eval_batch_size=8 \
    --predict_batch_size=8 \
    --learning_rate=2e-5 \
    --num_train_epochs=5.0 \
    --output_dir=output/ner/conll2003/debug
    --export_dir=output/ner/conll2003/export
  • Visualize summary
tensorboard --logdir=output/ner/conll2003
  • Setup service
docker run -p 8500:8500 \
  -v output/ner/conll2003/export/xxxxx:models/ner \
  -e MODEL_NAME=ner \
  -t tensorflow/serving

Experiment

CoNLL2003-NER

Figure 2: Illustrations of fine-tuning BERT on NER task

CoNLL2003 - NER Avg. (5-run) Best
Precision 91.37 ± 0.33 91.87
Recall 92.37 ± 0.25 92.68
F1 Score 91.87 ± 0.28 92.27

Table 1: The test set performance of BERT-large finetuned model on CoNLL2003-NER task with setting: batch size = 16, max length = 128, learning rate = 2e-5, num epoch = 5.0

ATIS-NLU

Figure 3: Illustrations of fine-tuning BERT on NLU task

ATIS - NLU Avg. (5-run) Best
Accuracy - Intent 97.38 ± 0.19 97.65
F1 Score - Slot 95.61 ± 0.09 95.53

Table 2: The test set performance of BERT-large finetuned model on ATIS-NLU task with setting: batch size = 16, max length = 128, learning rate = 2e-5, num epoch = 5.0

Reference