-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_critic.py
75 lines (57 loc) · 2.84 KB
/
train_critic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
import json
import utils
import numpy as np
from glob import glob
from tqdm import tqdm
import torch
from FARC import FARCritic
BS = 256
T = 2000
obs_dim = 150
hidden_size = 128
epochs = 100
data_dir = "./Data/testbed_dataset/train/"
def train():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
critic = FARCritic(input_dim=obs_dim).to(device)
# optimizers
optimizer = torch.optim.Adam(critic.parameters(), lr=1e-3)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
loss_fn = torch.nn.MSELoss()
trace_files = glob(os.path.join(data_dir, '*.json'), recursive=True)
for epoch in range(epochs):
print("Epoch {}/{}".format(epoch + 1, epochs))
critic.train()
for filename in tqdm(trace_files):
with open(filename, "r") as file:
call_data = json.load(file)
optimizer.zero_grad()
observations = np.asarray(call_data['observations'], dtype=np.float32)
bandwidth_predictions = np.asarray(call_data['bandwidth_predictions'], dtype=np.float32)
# solve NaN values
video_quality = utils.forward_fill(np.asarray(call_data['video_quality'], dtype=np.float32))
audio_quality = utils.forward_fill(np.asarray(call_data['audio_quality'], dtype=np.float32))
batched_observations = utils.prepare_batches(observations, BS)
batched_predictions = utils.prepare_batches(bandwidth_predictions, BS)
batched_vid_qualities = utils.prepare_batches(video_quality, BS)
batched_aud_qualities = utils.prepare_batches(audio_quality, BS)
for batch_obs, batch_preds, batch_vid, batch_aud in zip(batched_observations, batched_predictions,
batched_vid_qualities, batched_aud_qualities):
optimizer.zero_grad()
state = torch.tensor(batch_obs, dtype=torch.float32).reshape(-1, 1, obs_dim).to(device)
action = torch.tensor(batch_preds, dtype=torch.float32).unsqueeze(0).reshape(-1, 1).to(device)
vid = torch.tensor(batch_vid, dtype=torch.float32).unsqueeze(0).reshape(-1, 1).to(device)
aud = torch.tensor(batch_aud, dtype=torch.float32).unsqueeze(0).reshape(-1, 1).to(device)
critic_estimate = critic(state, action)
loss = loss_fn(critic_estimate, torch.cat((vid, aud), dim=1))
if torch.isnan(loss):
continue
loss.backward()
optimizer.step()
scheduler.step()
if epoch % 10 == 0:
utils.save_checkpoint(critic, optimizer, epoch,
filename="./model_checkpoints/critic_{}_{}.pth".format(critic.name, epoch))
if __name__ == '__main__':
train()