diff --git a/compressible_flow/NICFD_nozzle/NICFD_nozzle.cfg b/compressible_flow/NICFD_nozzle/NICFD_nozzle.cfg index f3547b0..dd28e9d 100644 --- a/compressible_flow/NICFD_nozzle/NICFD_nozzle.cfg +++ b/compressible_flow/NICFD_nozzle/NICFD_nozzle.cfg @@ -104,7 +104,7 @@ MU_CONSTANT= 1.21409E-05 CONDUCTIVITY_MODEL= CONSTANT_CONDUCTIVITY % % Molecular Thermal Conductivity that would be constant (0.0257 by default) -KT_CONSTANT= 0.030542828 +THERMAL_CONDUCTIVITY_CONSTANT= 0.030542828 % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % diff --git a/incompressible_flow/Inc_Laminar_Cavity/lam_buoyancy_cavity.cfg b/incompressible_flow/Inc_Laminar_Cavity/lam_buoyancy_cavity.cfg index a1831de..f9494a0 100644 --- a/incompressible_flow/Inc_Laminar_Cavity/lam_buoyancy_cavity.cfg +++ b/incompressible_flow/Inc_Laminar_Cavity/lam_buoyancy_cavity.cfg @@ -77,7 +77,7 @@ MU_CONSTANT= 1.716e-5 CONDUCTIVITY_MODEL= CONSTANT_CONDUCTIVITY % % Molecular Thermal Conductivity that would be constant (0.0257 by default) -KT_CONSTANT= 0.0246295028571 +THERMAL_CONDUCTIVITY_CONSTANT= 0.0246295028571 % ----------------------- BODY FORCE DEFINITION -------------------------------% % diff --git a/multiphysics/steady_cht/cht_2d_3cylinders.cfg b/multiphysics/steady_cht/cht_2d_3cylinders.cfg index cacc9f2..48b9552 100644 --- a/multiphysics/steady_cht/cht_2d_3cylinders.cfg +++ b/multiphysics/steady_cht/cht_2d_3cylinders.cfg @@ -5,10 +5,9 @@ % Author: O. Burghardt, T. Economon % % Institution: Chair for Scientific Computing, TU Kaiserslautern % % Date: August 8, 2019 % -% File Version 6.0.1 "Falcon" % +% File Version 7.1.1 "Blackbird" % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - % % Physical governing equations (EULER, NAVIER_STOKES, % WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, @@ -18,67 +17,34 @@ SOLVER= MULTIPHYSICS % Mathematical problem (DIRECT, CONTINUOUS_ADJOINT, DISCRETE_ADJOINT) MATH_PROBLEM= DIRECT % -% Restart solution (NO, YES) -RESTART_SOL= NO % -% Configuration file list, one for each physical zone -CONFIG_LIST= (flow_cylinder.cfg, solid_cylinder1.cfg, solid_cylinder2.cfg, solid_cylinder3.cfg) +CONFIG_LIST = (flow_cylinder.cfg, solid_cylinder1.cfg, solid_cylinder2.cfg, solid_cylinder3.cfg) +% % -% Definition of the interface MARKER_ZONE_INTERFACE= (cylinder_outer1, cylinder_inner1, cylinder_outer2, cylinder_inner2, cylinder_outer3, cylinder_inner3) +% +% MARKER_CHT_INTERFACE= (cylinder_outer1, cylinder_inner1, cylinder_outer2, cylinder_inner2, cylinder_outer3, cylinder_inner3) % -% Objective function in gradient evaluation (DRAG, LIFT, SIDEFORCE, MOMENT_X, -% MOMENT_Y, MOMENT_Z, EFFICIENCY, -% EQUIVALENT_AREA, NEARFIELD_PRESSURE, -% FORCE_X, FORCE_Y, FORCE_Z, THRUST, -% TORQUE, TOTAL_HEATFLUX, -% MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE, -% INVERSE_DESIGN_HEATFLUX, SURFACE_TOTAL_PRESSURE, -% SURFACE_MASSFLOW, SURFACE_STATIC_PRESSURE, SURFACE_MACH) -% For a weighted sum of objectives: separate by commas, add OBJECTIVE_WEIGHT and MARKER_MONITORING in matching order. -OBJECTIVE_FUNCTION= TOTAL_HEATFLUX % -% List of weighting values when using more than one OBJECTIVE_FUNCTION. Separate by commas and match with MARKER_MONITORING. -OBJECTIVE_WEIGHT= 1.0 +CHT_COUPLING_METHOD= DIRECT_TEMPERATURE_ROBIN_HEATFLUX +% +% +TIME_DOMAIN = NO % -% Number of total iterations -OUTER_ITER = 15000 -OUTPUT_WRT_FREQ = 15000 +% Number of total iterations (15000 for suitable results) +OUTER_ITER = 11 % % Mesh input file MESH_FILENAME= mesh_cht_3cyl_ffd.su2 -MESH_OUT_FILENAME= mesh_cht_3cyl_out.su2 % % Mesh input file format (SU2, CGNS, NETCDF_ASCII) MESH_FORMAT= SU2 % % Output file format -OUTPUT_FILES= (RESTART, TECPLOT, PARAVIEW, SURFACE_TECPLOT, SURFACE_PARAVIEW) -% -% Multizone convergence criteria -CONV_RESIDUAL_MINVAL= -20 - -% -------------------- FREE-FORM DEFORMATION PARAMETERS -----------------------% -% -% Tolerance of the Free-Form Deformation point inversion -FFD_TOLERANCE= 1E-12 -% -% Maximum number of iterations in the Free-Form Deformation point inversion -FFD_ITERATIONS= 500 -% -% FFD box definition: 3D case (FFD_BoxTag, X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3, X4, Y4, Z4, -% X5, Y5, Z5, X6, Y6, Z6, X7, Y7, Z7, X8, Y8, Z8) -% 2D case (FFD_BoxTag, X1, Y1, 0.0, X2, Y2, 0.0, X3, Y3, 0.0, X4, Y4, 0.0, -% 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) -FFD_DEFINITION= (MAIN_BOX, -0.1, -0.6, 0.0, 1.1, -0.6, 0.0, 1.1, 0.6, 0.0, -0.1, 0.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) -% -% FFD box degree: 3D case (x_degree, y_degree, z_degree) -% 2D case (x_degree, y_degree, 0) -FFD_DEGREE= ( 24, 1, 0) +OUTPUT_FILES= (RESTART, PARAVIEW_MULTIBLOCK) % -% Surface continuity at the intersection with the FFD (1ST_DERIVATIVE, 2ND_DERIVATIVE) -FFD_CONTINUITY= 2ND_DERIVATIVE +% These are just default parameters so that we can run SU2_DOT_AD, they have no physical meaning for this test case. % ----------------------- DESIGN VARIABLE PARAMETERS --------------------------% % @@ -87,10 +53,10 @@ FFD_CONTINUITY= 2ND_DERIVATIVE % FFD_CONTROL_POINT, FFD_CAMBER, FFD_THICKNESS, FFD_TWIST % FFD_CONTROL_POINT_2D, FFD_CAMBER_2D, FFD_THICKNESS_2D, FFD_TWIST_2D, % HICKS_HENNE, SURFACE_BUMP) -DV_KIND= FFD_CONTROL_POINT_2D +DV_KIND= HICKS_HENNE % % Marker of the surface in which we are going apply the shape deformation -DV_MARKER= (cylinder_outer1, cylinder_inner1, cylinder_outer2, cylinder_inner2, cylinder_outer3, cylinder_inner3) +DV_MARKER= ( cylinder_outer1, cylinder_inner1, cylinder_outer2, cylinder_inner2, cylinder_outer3, cylinder_inner3 ) % % Parameters of the shape deformation % - NO_DEFORMATION ( 1.0 ) @@ -112,7 +78,7 @@ DV_MARKER= (cylinder_outer1, cylinder_inner1, cylinder_outer2, cylinder_inner2, % - FFD_TWIST_2D ( FFD_BoxTag, x_Orig, y_Orig ) % - HICKS_HENNE ( Lower Surface (0)/Upper Surface (1)/Only one Surface (2), x_Loc ) % - SURFACE_BUMP ( x_Start, x_End, x_Loc ) -DV_PARAM= ( MAIN_BOX, 12, 1, 0.0, 1.0 ) +DV_PARAM= (0.0, 0.5) % % Value of the shape deformation DV_VALUE= 0.1 diff --git a/multiphysics/steady_cht/flow_cylinder.cfg b/multiphysics/steady_cht/flow_cylinder.cfg index 24caafb..669aca1 100644 --- a/multiphysics/steady_cht/flow_cylinder.cfg +++ b/multiphysics/steady_cht/flow_cylinder.cfg @@ -15,20 +15,28 @@ SOLVER= INC_NAVIER_STOKES % If Navier-Stokes, kind of turbulent model (NONE, SA) KIND_TURB_MODEL= NONE % -% Data written to history file -WRT_ZONE_HIST= YES -HISTORY_OUTPUT= (ITER, RMS_RES, HEAT) -% -% Number of inner iteration -INNER_ITER=1 - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -20 +% Restart solution (NO, YES) +RESTART_SOL= NO +% +% Objective function in gradient evaluation (DRAG, LIFT, SIDEFORCE, MOMENT_X, +% MOMENT_Y, MOMENT_Z, EFFICIENCY, +% EQUIVALENT_AREA, NEARFIELD_PRESSURE, +% FORCE_X, FORCE_Y, FORCE_Z, THRUST, +% TORQUE, TOTAL_HEATFLUX, +% MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE, +% INVERSE_DESIGN_HEATFLUX, SURFACE_TOTAL_PRESSURE, +% SURFACE_MASSFLOW, SURFACE_STATIC_PRESSURE, SURFACE_MACH) +% For a weighted sum of objectives: separate by commas, add OBJECTIVE_WEIGHT and MARKER_MONITORING in matching order. +OBJECTIVE_FUNCTION= TOTAL_HEATFLUX +% +% List of weighting values when using more than one OBJECTIVE_FUNCTION. Separate by commas and match with MARKER_MONITORING. +OBJECTIVE_WEIGHT = 1.0 +% +% Read binary restart files (YES, NO) +READ_BINARY_RESTART = YES % -% Start convergence criteria at iteration number -CONV_STARTITER= 0 +% Data written to history file +HISTORY_OUTPUT=(ITER, RMS_RES, HEAT ) % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % @@ -52,7 +60,7 @@ INC_DENSITY_MODEL= VARIABLE INC_ENERGY_EQUATION = YES % % Initial density for incompressible flows (1.2886 kg/m^3 by default) -INC_DENSITY_INIT= 0.00042 +INC_DENSITY_INIT= 0.000210322 % % Initial velocity for incompressible flows (1.0,0,0 m/s by default) INC_VELOCITY_INIT= ( 3.40297, 0.0, 0.0 ) @@ -104,7 +112,7 @@ SUTHERLAND_CONSTANT= 110.4 CONDUCTIVITY_MODEL= CONSTANT_PRANDTL % % Molecular Thermal Conductivity that would be constant (0.0257 by default) -KT_CONSTANT= 0.0257 +THERMAL_CONDUCTIVITY_CONSTANT= 0.0257 % % Laminar Prandtl number (0.72 (air), only for CONSTANT_PRANDTL) PRANDTL_LAM= 0.72 @@ -118,7 +126,7 @@ PRANDTL_TURB= 0.90 NUM_METHOD_GRAD= GREEN_GAUSS % % Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 50.0 +CFL_NUMBER= 10.0 % % Adaptive CFL number (NO, YES) CFL_ADAPT= NO @@ -140,14 +148,14 @@ LINEAR_SOLVER= FGMRES % Preconditioner of the Krylov linear solver (ILU, LU_SGS, LINELET, JACOBI) LINEAR_SOLVER_PREC= ILU % -% Linael solver ILU preconditioner fill-in level (0 by default) +% Linear solver ILU preconditioner fill-in level (0 by default) LINEAR_SOLVER_ILU_FILL_IN= 0 % % Minimum error of the linear solver for implicit formulations LINEAR_SOLVER_ERROR= 1E-15 % % Max number of iterations of the linear solver for the implicit formulation -LINEAR_SOLVER_ITER= 10 +LINEAR_SOLVER_ITER= 5 % -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% % @@ -166,34 +174,19 @@ SLOPE_LIMITER_FLOW= NONE % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_FLOW= EULER_IMPLICIT -% ----------- SLOPE LIMITER AND DISSIPATION SENSOR DEFINITION -----------------% -% -% Coefficient for the Venkat's limiter (upwind scheme). A larger values decrease -% the extent of limiting, values approaching zero cause -% lower-order approximation to the solution (0.05 by default) -VENKAT_LIMITER_COEFF= 0.05 -% -% Coefficient for the adjoint sharp edges limiter (3.0 by default). -ADJ_SHARP_LIMITER_COEFF= 3.0 -% -% Freeze the value of the limiter after a number of iterations -LIMITER_ITER= 999999 +% --------------------------- CONVERGENCE PARAMETERS --------------------------% % -% 1st order artificial dissipation coefficients for -% the Lax–Friedrichs method ( 0.15 by default ) -LAX_SENSOR_COEFF= 0.15 +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -19 % -% 2nd and 4th order artificial dissipation coefficients for -% the JST method ( 0.5, 0.02 by default ) -JST_SENSOR_COEFF= ( 0.5, 0.05 ) +% Start convergence criteria at iteration number +CONV_STARTITER= 10 % -% 1st order artificial dissipation coefficients for -% the adjoint Lax–Friedrichs method ( 0.15 by default ) -ADJ_LAX_SENSOR_COEFF= 0.15 +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 % -% 2nd, and 4th order artificial dissipation coefficients for -% the adjoint JST method ( 0.5, 0.02 by default ) -ADJ_JST_SENSOR_COEFF= ( 0.5, 0.02 ) +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % @@ -203,6 +196,10 @@ SOLUTION_FILENAME= solution_flow.dat % Restart adjoint input file SOLUTION_ADJ_FILENAME= solution_adj.dat % +% Output file format (TECPLOT, TECPLOT_BINARY, PARAVIEW, +% FIELDVIEW, FIELDVIEW_BINARY) +TABULAR_FORMAT= TECPLOT +% % Output file convergence history (w/o extension) CONV_FILENAME= history % @@ -232,3 +229,23 @@ SURFACE_FILENAME= surface_flow % % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint +% + +% ------------------------ GRID DEFORMATION PARAMETERS ------------------------% +% +% Linear solver or smoother for implicit formulations (FGMRES, RESTARTED_FGMRES, BCGSTAB) +DEFORM_LINEAR_SOLVER= FGMRES +% +% Number of smoothing iterations for mesh deformation +DEFORM_LINEAR_SOLVER_ITER= 200 +% +% Number of nonlinear deformation iterations (surface deformation increments) +DEFORM_NONLINEAR_ITER= 1 +% +% Print the residuals during mesh deformation to the console (YES, NO) +DEFORM_CONSOLE_OUTPUT= YES +% +% Type of element stiffness imposed for FEA mesh deformation (INVERSE_VOLUME, +% WALL_DISTANCE, CONSTANT_STIFFNESS) +DEFORM_STIFFNESS_TYPE= INVERSE_VOLUME + diff --git a/multiphysics/steady_cht/solid_cylinder1.cfg b/multiphysics/steady_cht/solid_cylinder1.cfg index 4455eae..2496488 100644 --- a/multiphysics/steady_cht/solid_cylinder1.cfg +++ b/multiphysics/steady_cht/solid_cylinder1.cfg @@ -12,27 +12,32 @@ % POISSON_EQUATION) SOLVER= HEAT_EQUATION % -% Data written to history file -WRT_ZONE_HIST= YES -HISTORY_OUTPUT= (ITER, RMS_RES, HEAT) -% -% Number of inner iteration -INNER_ITER=10 - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -20 -% -% Start convergence criteria at iteration number -CONV_STARTITER= 10 +% Restart solution (NO, YES) +RESTART_SOL= NO +% +% Objective function in gradient evaluation (DRAG, LIFT, SIDEFORCE, MOMENT_X, +% MOMENT_Y, MOMENT_Z, EFFICIENCY, +% EQUIVALENT_AREA, NEARFIELD_PRESSURE, +% FORCE_X, FORCE_Y, FORCE_Z, THRUST, +% TORQUE, TOTAL_HEATFLUX, +% MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE, +% INVERSE_DESIGN_HEATFLUX, SURFACE_TOTAL_PRESSURE, +% SURFACE_MASSFLOW, SURFACE_STATIC_PRESSURE, SURFACE_MACH) +% For a weighted sum of objectives: separate by commas, add OBJECTIVE_WEIGHT and MARKER_MONITORING in matching order. +OBJECTIVE_FUNCTION= TOTAL_HEATFLUX +% +% List of weighting values when using more than one OBJECTIVE_FUNCTION. Separate by commas and match with MARKER_MONITORING. +OBJECTIVE_WEIGHT = 1.0 +% +% Read binary restart files (YES, NO) +READ_BINARY_RESTART = YES % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % MARKER_ISOTHERMAL= ( core1, 350.0 ) % % Marker(s) of the surface to be plotted or designed -MARKER_PLOTTING= ( cylinder_inner1 ) +MARKER_PLOTTING= (cylinder_inner1 ) % % Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated MARKER_MONITORING= ( NONE ) @@ -43,18 +48,18 @@ MARKER_MONITORING= ( NONE ) INC_NONDIM= DIMENSIONAL % % Temperature initialization value -SOLID_TEMPERATURE_INIT= 288.15 +FREESTREAM_TEMPERATURE= 350.0 % % Nettis case: hollow cylinder (air w/ 4x the conductivity) % % Solid density (kg/m^3) -SOLID_DENSITY= 0.00042 +MATERIAL_DENSITY= 0.000210322 % % Solid specific heat (J/kg*K) -SPECIFIC_HEAT_CP = 1004.703 +SPECIFIC_HEAT_CP= 1004.703 % % Solid thermal conductivity (W/m*K) -SOLID_THERMAL_CONDUCTIVITY= 0.1 +THERMAL_CONDUCTIVITY_CONSTANT= 0.1028 % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % @@ -62,7 +67,7 @@ SOLID_THERMAL_CONDUCTIVITY= 0.1 NUM_METHOD_GRAD= GREEN_GAUSS % % Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 50.0 +CFL_NUMBER= 10.0 % % Adaptive CFL number (NO, YES) CFL_ADAPT= NO @@ -84,7 +89,7 @@ LINEAR_SOLVER= FGMRES % Preconditioner of the Krylov linear solver (ILU, LU_SGS, LINELET, JACOBI) LINEAR_SOLVER_PREC= ILU % -% Linael solver ILU preconditioner fill-in level (0 by default) +% Linear solver ILU preconditioner fill-in level (0 by default) LINEAR_SOLVER_ILU_FILL_IN= 0 % % Minimum error of the linear solver for implicit formulations @@ -95,9 +100,22 @@ LINEAR_SOLVER_ITER= 5 % -------------------- HEAT NUMERICAL METHOD DEFINITION -----------------------% % -% Time discretization (EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_HEAT= EULER_IMPLICIT +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -19 +% +% Start convergence criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 + % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % % Restart flow input file @@ -106,6 +124,10 @@ SOLUTION_FILENAME= solution_flow.dat % Restart adjoint input file SOLUTION_ADJ_FILENAME= solution_adj.dat % +% Output file format (TECPLOT, TECPLOT_BINARY, PARAVIEW, +% FIELDVIEW, FIELDVIEW_BINARY) +TABULAR_FORMAT= TECPLOT +% % Output file convergence history (w/o extension) CONV_FILENAME= history % @@ -136,3 +158,22 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % + +% ------------------------ GRID DEFORMATION PARAMETERS ------------------------% +% +% Linear solver or smoother for implicit formulations (FGMRES, RESTARTED_FGMRES, BCGSTAB) +DEFORM_LINEAR_SOLVER= FGMRES +% +% Number of smoothing iterations for mesh deformation +DEFORM_LINEAR_SOLVER_ITER= 200 +% +% Number of nonlinear deformation iterations (surface deformation increments) +DEFORM_NONLINEAR_ITER= 1 +% +% Print the residuals during mesh deformation to the console (YES, NO) +DEFORM_CONSOLE_OUTPUT= YES +% +% Type of element stiffness imposed for FEA mesh deformation (INVERSE_VOLUME, +% WALL_DISTANCE, CONSTANT_STIFFNESS) +DEFORM_STIFFNESS_TYPE= INVERSE_VOLUME + diff --git a/multiphysics/steady_cht/solid_cylinder2.cfg b/multiphysics/steady_cht/solid_cylinder2.cfg index bb56b5b..bf62a60 100644 --- a/multiphysics/steady_cht/solid_cylinder2.cfg +++ b/multiphysics/steady_cht/solid_cylinder2.cfg @@ -12,27 +12,32 @@ % POISSON_EQUATION) SOLVER= HEAT_EQUATION % -% Data written to history file -WRT_ZONE_HIST= YES -HISTORY_OUTPUT= (ITER, RMS_RES, HEAT) -% -% Number of inner iteration -INNER_ITER=10 - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -20 -% -% Start convergence criteria at iteration number -CONV_STARTITER= 10 +% Restart solution (NO, YES) +RESTART_SOL= NO +% +% Objective function in gradient evaluation (DRAG, LIFT, SIDEFORCE, MOMENT_X, +% MOMENT_Y, MOMENT_Z, EFFICIENCY, +% EQUIVALENT_AREA, NEARFIELD_PRESSURE, +% FORCE_X, FORCE_Y, FORCE_Z, THRUST, +% TORQUE, TOTAL_HEATFLUX, +% MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE, +% INVERSE_DESIGN_HEATFLUX, SURFACE_TOTAL_PRESSURE, +% SURFACE_MASSFLOW, SURFACE_STATIC_PRESSURE, SURFACE_MACH) +% For a weighted sum of objectives: separate by commas, add OBJECTIVE_WEIGHT and MARKER_MONITORING in matching order. +OBJECTIVE_FUNCTION= TOTAL_HEATFLUX +% +% List of weighting values when using more than one OBJECTIVE_FUNCTION. Separate by commas and match with MARKER_MONITORING. +OBJECTIVE_WEIGHT = 1.0 +% +% Read binary restart files (YES, NO) +READ_BINARY_RESTART = YES % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % MARKER_ISOTHERMAL= ( core2, 350.0 ) % % Marker(s) of the surface to be plotted or designed -MARKER_PLOTTING= ( cylinder_inner2 ) +MARKER_PLOTTING= (cylinder_inner2) % % Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated MARKER_MONITORING= ( NONE ) @@ -43,18 +48,18 @@ MARKER_MONITORING= ( NONE ) INC_NONDIM= DIMENSIONAL % % Temperature initialization value -SOLID_TEMPERATURE_INIT= 350.0 +FREESTREAM_TEMPERATURE= 350.0 % % Nettis case: hollow cylinder (air w/ 4x the conductivity) % % Solid density (kg/m^3) -SOLID_DENSITY= 0.00042 +MATERIAL_DENSITY= 0.000210322 % % Solid specific heat (J/kg*K) -SPECIFIC_HEAT_CP = 1004.703 +SPECIFIC_HEAT_CP= 1004.703 % % Solid thermal conductivity (W/m*K) -SOLID_THERMAL_CONDUCTIVITY= 0.1 +THERMAL_CONDUCTIVITY_CONSTANT= 0.1028 % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % @@ -62,7 +67,7 @@ SOLID_THERMAL_CONDUCTIVITY= 0.1 NUM_METHOD_GRAD= GREEN_GAUSS % % Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 50.0 +CFL_NUMBER= 10.0 % % Adaptive CFL number (NO, YES) CFL_ADAPT= NO @@ -73,6 +78,15 @@ CFL_ADAPT_PARAM= ( 1.5, 0.5, 10.0, 10000.0 ) % % Runge-Kutta alpha coefficients RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) +% +% Objective function in gradient evaluation (DRAG, LIFT, SIDEFORCE, MOMENT_X, +% MOMENT_Y, MOMENT_Z, EFFICIENCY, +% EQUIVALENT_AREA, NEARFIELD_PRESSURE, +% FORCE_X, FORCE_Y, FORCE_Z, THRUST, +% TORQUE, TOTAL_HEATFLUX, +% MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE, +% INVERSE_DESIGN_HEATFLUX, SURFACE_TOTAL_PRESSURE, +% SURFACE_MASSFLOW, SURFACE_STATIC_PRESSURE, SURFACE_MACH) % ------------------------ LINEAR SOLVER DEFINITION ---------------------------% % @@ -84,7 +98,7 @@ LINEAR_SOLVER= FGMRES % Preconditioner of the Krylov linear solver (ILU, LU_SGS, LINELET, JACOBI) LINEAR_SOLVER_PREC= ILU % -% Linael solver ILU preconditioner fill-in level (0 by default) +% Linear solver ILU preconditioner fill-in level (0 by default) LINEAR_SOLVER_ILU_FILL_IN= 0 % % Minimum error of the linear solver for implicit formulations @@ -98,6 +112,20 @@ LINEAR_SOLVER_ITER= 5 % Time discretization (EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_HEAT= EULER_IMPLICIT +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -19 +% +% Start convergence criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 + % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % % Restart flow input file @@ -106,6 +134,10 @@ SOLUTION_FILENAME= solution_flow.dat % Restart adjoint input file SOLUTION_ADJ_FILENAME= solution_adj.dat % +% Output file format (TECPLOT, TECPLOT_BINARY, PARAVIEW, +% FIELDVIEW, FIELDVIEW_BINARY) +TABULAR_FORMAT= TECPLOT +% % Output file convergence history (w/o extension) CONV_FILENAME= history % @@ -135,3 +167,23 @@ SURFACE_FILENAME= surface_flow % % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint +% + +% ------------------------ GRID DEFORMATION PARAMETERS ------------------------% +% +% Linear solver or smoother for implicit formulations (FGMRES, RESTARTED_FGMRES, BCGSTAB) +DEFORM_LINEAR_SOLVER= FGMRES +% +% Number of smoothing iterations for mesh deformation +DEFORM_LINEAR_SOLVER_ITER= 200 +% +% Number of nonlinear deformation iterations (surface deformation increments) +DEFORM_NONLINEAR_ITER= 1 +% +% Print the residuals during mesh deformation to the console (YES, NO) +DEFORM_CONSOLE_OUTPUT= YES +% +% Type of element stiffness imposed for FEA mesh deformation (INVERSE_VOLUME, +% WALL_DISTANCE, CONSTANT_STIFFNESS) +DEFORM_STIFFNESS_TYPE= INVERSE_VOLUME + diff --git a/multiphysics/steady_cht/solid_cylinder3.cfg b/multiphysics/steady_cht/solid_cylinder3.cfg index 5c7dcb3..cc1c1d1 100644 --- a/multiphysics/steady_cht/solid_cylinder3.cfg +++ b/multiphysics/steady_cht/solid_cylinder3.cfg @@ -12,20 +12,25 @@ % POISSON_EQUATION) SOLVER= HEAT_EQUATION % -% Data written to history file -WRT_ZONE_HIST= YES -HISTORY_OUTPUT= (ITER, RMS_RES, HEAT) -% -% Number of inner iteration -INNER_ITER=10 - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -20 -% -% Start convergence criteria at iteration number -CONV_STARTITER= 10 +% Restart solution (NO, YES) +RESTART_SOL= NO +% +% Objective function in gradient evaluation (DRAG, LIFT, SIDEFORCE, MOMENT_X, +% MOMENT_Y, MOMENT_Z, EFFICIENCY, +% EQUIVALENT_AREA, NEARFIELD_PRESSURE, +% FORCE_X, FORCE_Y, FORCE_Z, THRUST, +% TORQUE, TOTAL_HEATFLUX, +% MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE, +% INVERSE_DESIGN_HEATFLUX, SURFACE_TOTAL_PRESSURE, +% SURFACE_MASSFLOW, SURFACE_STATIC_PRESSURE, SURFACE_MACH) +% For a weighted sum of objectives: separate by commas, add OBJECTIVE_WEIGHT and MARKER_MONITORING in matching order. +OBJECTIVE_FUNCTION= TOTAL_HEATFLUX +% +% List of weighting values when using more than one OBJECTIVE_FUNCTION. Separate by commas and match with MARKER_MONITORING. +OBJECTIVE_WEIGHT = 1.0 +% +% Read binary restart files (YES, NO) +READ_BINARY_RESTART = YES % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % @@ -43,18 +48,18 @@ MARKER_MONITORING= ( NONE ) INC_NONDIM= DIMENSIONAL % % Temperature initialization value -SOLID_TEMPERATURE_INIT= 350.0 +FREESTREAM_TEMPERATURE= 350.0 % % Nettis case: hollow cylinder (air w/ 4x the conductivity) % % Solid density (kg/m^3) -SOLID_DENSITY= 0.00042 +MATERIAL_DENSITY= 0.000210322 % % Solid specific heat (J/kg*K) -SPECIFIC_HEAT_CP = 1004.703 +SPECIFIC_HEAT_CP= 1004.703 % % Solid thermal conductivity (W/m*K) -SOLID_THERMAL_CONDUCTIVITY= 0.1 +THERMAL_CONDUCTIVITY_CONSTANT= 0.1028 % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % @@ -62,7 +67,7 @@ SOLID_THERMAL_CONDUCTIVITY= 0.1 NUM_METHOD_GRAD= GREEN_GAUSS % % Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 50.0 +CFL_NUMBER= 10.0 % % Adaptive CFL number (NO, YES) CFL_ADAPT= NO @@ -73,6 +78,15 @@ CFL_ADAPT_PARAM= ( 1.5, 0.5, 10.0, 10000.0 ) % % Runge-Kutta alpha coefficients RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) +% +% Objective function in gradient evaluation (DRAG, LIFT, SIDEFORCE, MOMENT_X, +% MOMENT_Y, MOMENT_Z, EFFICIENCY, +% EQUIVALENT_AREA, NEARFIELD_PRESSURE, +% FORCE_X, FORCE_Y, FORCE_Z, THRUST, +% TORQUE, TOTAL_HEATFLUX, +% MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE, +% INVERSE_DESIGN_HEATFLUX, SURFACE_TOTAL_PRESSURE, +% SURFACE_MASSFLOW, SURFACE_STATIC_PRESSURE, SURFACE_MACH) % ------------------------ LINEAR SOLVER DEFINITION ---------------------------% % @@ -84,7 +98,7 @@ LINEAR_SOLVER= FGMRES % Preconditioner of the Krylov linear solver (ILU, LU_SGS, LINELET, JACOBI) LINEAR_SOLVER_PREC= ILU % -% Linael solver ILU preconditioner fill-in level (0 by default) +% Linear solver ILU preconditioner fill-in level (0 by default) LINEAR_SOLVER_ILU_FILL_IN= 0 % % Minimum error of the linear solver for implicit formulations @@ -98,6 +112,20 @@ LINEAR_SOLVER_ITER= 5 % Time discretization (EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_HEAT= EULER_IMPLICIT +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -19 +% +% Start convergence criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 + % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % % Restart flow input file @@ -106,6 +134,10 @@ SOLUTION_FILENAME= solution_flow.dat % Restart adjoint input file SOLUTION_ADJ_FILENAME= solution_adj.dat % +% Output file format (TECPLOT, TECPLOT_BINARY, PARAVIEW, +% FIELDVIEW, FIELDVIEW_BINARY) +TABULAR_FORMAT= TECPLOT +% % Output file convergence history (w/o extension) CONV_FILENAME= history % @@ -135,3 +167,23 @@ SURFACE_FILENAME= surface_flow % % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint +% + +% ------------------------ GRID DEFORMATION PARAMETERS ------------------------% +% +% Linear solver or smoother for implicit formulations (FGMRES, RESTARTED_FGMRES, BCGSTAB) +DEFORM_LINEAR_SOLVER= FGMRES +% +% Number of smoothing iterations for mesh deformation +DEFORM_LINEAR_SOLVER_ITER= 200 +% +% Number of nonlinear deformation iterations (surface deformation increments) +DEFORM_NONLINEAR_ITER= 1 +% +% Print the residuals during mesh deformation to the console (YES, NO) +DEFORM_CONSOLE_OUTPUT= YES +% +% Type of element stiffness imposed for FEA mesh deformation (INVERSE_VOLUME, +% WALL_DISTANCE, CONSTANT_STIFFNESS) +DEFORM_STIFFNESS_TYPE= INVERSE_VOLUME + diff --git a/multiphysics/unsteady_cht/flow_cylinder.cfg b/multiphysics/unsteady_cht/flow_cylinder.cfg index 2ca2d41..d91fe31 100644 --- a/multiphysics/unsteady_cht/flow_cylinder.cfg +++ b/multiphysics/unsteady_cht/flow_cylinder.cfg @@ -83,7 +83,7 @@ SUTHERLAND_CONSTANT= 110.4 CONDUCTIVITY_MODEL= CONSTANT_PRANDTL % % Molecular Thermal Conductivity that would be constant (0.0257 by default) -KT_CONSTANT= 0.0257 +THERMAL_CONDUCTIVITY_CONSTANT= 0.0257 % % Laminar Prandtl number (0.72 (air), only for CONSTANT_PRANDTL) PRANDTL_LAM= 0.72 diff --git a/multiphysics/unsteady_cht/solid_cylinder1.cfg b/multiphysics/unsteady_cht/solid_cylinder1.cfg index 59c88c5..fc616bf 100644 --- a/multiphysics/unsteady_cht/solid_cylinder1.cfg +++ b/multiphysics/unsteady_cht/solid_cylinder1.cfg @@ -22,16 +22,16 @@ MARKER_ISOTHERMAL= ( core1, 350.0 ) INC_NONDIM= DIMENSIONAL % % Temperature initialization value -SOLID_TEMPERATURE_INIT= 288.15 +FREESTREAM_TEMPERATURE= 288.15 % % Solid density (kg/m^3) -SOLID_DENSITY= 0.0210322 +MATERIAL_DENSITY= 0.0210322 % % Solid specific heat (J/kg*K) SPECIFIC_HEAT_CP= 1004.703 % % Solid thermal conductivity (W/m*K) -SOLID_THERMAL_CONDUCTIVITY= 0.1028 +THERMAL_CONDUCTIVITY_CONSTANT= 0.1028 % % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % diff --git a/multiphysics/unsteady_cht/solid_cylinder2.cfg b/multiphysics/unsteady_cht/solid_cylinder2.cfg index a382ed8..f064d2b 100644 --- a/multiphysics/unsteady_cht/solid_cylinder2.cfg +++ b/multiphysics/unsteady_cht/solid_cylinder2.cfg @@ -22,16 +22,16 @@ MARKER_ISOTHERMAL= ( core2, 350.0 ) INC_NONDIM= DIMENSIONAL % % Temperature initialization value -SOLID_TEMPERATURE_INIT= 288.15 +FREESTREAM_TEMPERATURE= 288.15 % % Solid density (kg/m^3) -SOLID_DENSITY= 0.0210322 +MATERIAL_DENSITY= 0.0210322 % % Solid specific heat (J/kg*K) SPECIFIC_HEAT_CP= 1004.703 % % Solid thermal conductivity (W/m*K) -SOLID_THERMAL_CONDUCTIVITY= 0.1028 +THERMAL_CONDUCTIVITY_CONSTANT= 0.1028 % % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % diff --git a/multiphysics/unsteady_cht/solid_cylinder3.cfg b/multiphysics/unsteady_cht/solid_cylinder3.cfg index 11553f5..1b9f527 100644 --- a/multiphysics/unsteady_cht/solid_cylinder3.cfg +++ b/multiphysics/unsteady_cht/solid_cylinder3.cfg @@ -22,16 +22,16 @@ MARKER_ISOTHERMAL= ( core3, 350.0 ) INC_NONDIM= DIMENSIONAL % % Temperature initialization value -SOLID_TEMPERATURE_INIT= 288.15 +FREESTREAM_TEMPERATURE= 288.15 % % Solid density (kg/m^3) -SOLID_DENSITY= 0.0210322 +MATERIAL_DENSITY= 0.0210322 % % Solid specific heat (J/kg*K) SPECIFIC_HEAT_CP= 1004.703 % % Solid thermal conductivity (W/m*K) -SOLID_THERMAL_CONDUCTIVITY= 0.1028 +THERMAL_CONDUCTIVITY_CONSTANT= 0.1028 % % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% %