forked from NishkarshRaj/100DaysofMLCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
svr.R
53 lines (46 loc) · 1.55 KB
/
svr.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# SVR
# Importing the dataset
dataset = read.csv('Position_Salaries.csv')
dataset = dataset[2:3]
# Splitting the dataset into the Training set and Test set
# # install.packages('caTools')
# library(caTools)
# set.seed(123)
# split = sample.split(dataset$Salary, SplitRatio = 2/3)
# training_set = subset(dataset, split == TRUE)
# test_set = subset(dataset, split == FALSE)
# Feature Scaling
# training_set = scale(training_set)
# test_set = scale(test_set)
# Fitting SVR to the dataset
# install.packages('e1071')
library(e1071)
regressor = svm(formula = Salary ~ .,
data = dataset,
type = 'eps-regression',
kernel = 'radial')
# Predicting a new result
y_pred = predict(regressor, data.frame(Level = 6.5))
# Visualising the SVR results
# install.packages('ggplot2')
library(ggplot2)
ggplot() +
geom_point(aes(x = dataset$Level, y = dataset$Salary),
colour = 'red') +
geom_line(aes(x = dataset$Level, y = predict(regressor, newdata = dataset)),
colour = 'blue') +
ggtitle('Truth or Bluff (SVR)') +
xlab('Level') +
ylab('Salary')
# Visualising the SVR results (for higher resolution and smoother curve)
# install.packages('ggplot2')
library(ggplot2)
x_grid = seq(min(dataset$Level), max(dataset$Level), 0.1)
ggplot() +
geom_point(aes(x = dataset$Level, y = dataset$Salary),
colour = 'red') +
geom_line(aes(x = x_grid, y = predict(regressor, newdata = data.frame(Level = x_grid))),
colour = 'blue') +
ggtitle('Truth or Bluff (SVR)') +
xlab('Level') +
ylab('Salary')