forked from NishkarshRaj/100DaysofMLCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
apriori.py
441 lines (369 loc) · 14.2 KB
/
apriori.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
#!/usr/bin/env python
"""
a simple implementation of Apriori algorithm by Python.
"""
import sys
import csv
import argparse
import json
import os
from collections import namedtuple
from itertools import combinations
from itertools import chain
# Meta informations.
__version__ = '1.1.1'
__author__ = 'Yu Mochizuki'
__author_email__ = '[email protected]'
################################################################################
# Data structures.
################################################################################
class TransactionManager(object):
"""
Transaction managers.
"""
def __init__(self, transactions):
"""
Initialize.
Arguments:
transactions -- A transaction iterable object
(eg. [['A', 'B'], ['B', 'C']]).
"""
self.__num_transaction = 0
self.__items = []
self.__transaction_index_map = {}
for transaction in transactions:
self.add_transaction(transaction)
def add_transaction(self, transaction):
"""
Add a transaction.
Arguments:
transaction -- A transaction as an iterable object (eg. ['A', 'B']).
"""
for item in transaction:
if item not in self.__transaction_index_map:
self.__items.append(item)
self.__transaction_index_map[item] = set()
self.__transaction_index_map[item].add(self.__num_transaction)
self.__num_transaction += 1
def calc_support(self, items):
"""
Returns a support for items.
Arguments:
items -- Items as an iterable object (eg. ['A', 'B']).
"""
# Empty items is supported by all transactions.
if not items:
return 1.0
# Empty transactions supports no items.
if not self.num_transaction:
return 0.0
# Create the transaction index intersection.
sum_indexes = None
for item in items:
indexes = self.__transaction_index_map.get(item)
if indexes is None:
# No support for any set that contains a not existing item.
return 0.0
if sum_indexes is None:
# Assign the indexes on the first time.
sum_indexes = indexes
else:
# Calculate the intersection on not the first time.
sum_indexes = sum_indexes.intersection(indexes)
# Calculate and return the support.
return float(len(sum_indexes)) / self.__num_transaction
def initial_candidates(self):
"""
Returns the initial candidates.
"""
return [frozenset([item]) for item in self.items]
@property
def num_transaction(self):
"""
Returns the number of transactions.
"""
return self.__num_transaction
@property
def items(self):
"""
Returns the item list that the transaction is consisted of.
"""
return sorted(self.__items)
@staticmethod
def create(transactions):
"""
Create the TransactionManager with a transaction instance.
If the given instance is a TransactionManager, this returns itself.
"""
if isinstance(transactions, TransactionManager):
return transactions
return TransactionManager(transactions)
# Ignore name errors because these names are namedtuples.
SupportRecord = namedtuple( # pylint: disable=C0103
'SupportRecord', ('items', 'support'))
RelationRecord = namedtuple( # pylint: disable=C0103
'RelationRecord', SupportRecord._fields + ('ordered_statistics',))
OrderedStatistic = namedtuple( # pylint: disable=C0103
'OrderedStatistic', ('items_base', 'items_add', 'confidence', 'lift',))
################################################################################
# Inner functions.
################################################################################
def create_next_candidates(prev_candidates, length):
"""
Returns the apriori candidates as a list.
Arguments:
prev_candidates -- Previous candidates as a list.
length -- The lengths of the next candidates.
"""
# Solve the items.
item_set = set()
for candidate in prev_candidates:
for item in candidate:
item_set.add(item)
items = sorted(item_set)
# Create the temporary candidates. These will be filtered below.
tmp_next_candidates = (frozenset(x) for x in combinations(items, length))
# Return all the candidates if the length of the next candidates is 2
# because their subsets are the same as items.
if length < 3:
return list(tmp_next_candidates)
# Filter candidates that all of their subsets are
# in the previous candidates.
next_candidates = [
candidate for candidate in tmp_next_candidates
if all(
True if frozenset(x) in prev_candidates else False
for x in combinations(candidate, length - 1))
]
return next_candidates
def gen_support_records(transaction_manager, min_support, **kwargs):
"""
Returns a generator of support records with given transactions.
Arguments:
transaction_manager -- Transactions as a TransactionManager instance.
min_support -- A minimum support (float).
Keyword arguments:
max_length -- The maximum length of relations (integer).
"""
# Parse arguments.
max_length = kwargs.get('max_length')
# For testing.
_create_next_candidates = kwargs.get(
'_create_next_candidates', create_next_candidates)
# Process.
candidates = transaction_manager.initial_candidates()
length = 1
while candidates:
relations = set()
for relation_candidate in candidates:
support = transaction_manager.calc_support(relation_candidate)
if support < min_support:
continue
candidate_set = frozenset(relation_candidate)
relations.add(candidate_set)
yield SupportRecord(candidate_set, support)
length += 1
if max_length and length > max_length:
break
candidates = _create_next_candidates(relations, length)
def gen_ordered_statistics(transaction_manager, record):
"""
Returns a generator of ordered statistics as OrderedStatistic instances.
Arguments:
transaction_manager -- Transactions as a TransactionManager instance.
record -- A support record as a SupportRecord instance.
"""
items = record.items
for combination_set in combinations(sorted(items), len(items) - 1):
items_base = frozenset(combination_set)
items_add = frozenset(items.difference(items_base))
confidence = (
record.support / transaction_manager.calc_support(items_base))
lift = confidence / transaction_manager.calc_support(items_add)
yield OrderedStatistic(
frozenset(items_base), frozenset(items_add), confidence, lift)
def filter_ordered_statistics(ordered_statistics, **kwargs):
"""
Filter OrderedStatistic objects.
Arguments:
ordered_statistics -- A OrderedStatistic iterable object.
Keyword arguments:
min_confidence -- The minimum confidence of relations (float).
min_lift -- The minimum lift of relations (float).
"""
min_confidence = kwargs.get('min_confidence', 0.0)
min_lift = kwargs.get('min_lift', 0.0)
for ordered_statistic in ordered_statistics:
if ordered_statistic.confidence < min_confidence:
continue
if ordered_statistic.lift < min_lift:
continue
yield ordered_statistic
################################################################################
# API function.
################################################################################
def apriori(transactions, **kwargs):
"""
Executes Apriori algorithm and returns a RelationRecord generator.
Arguments:
transactions -- A transaction iterable object
(eg. [['A', 'B'], ['B', 'C']]).
Keyword arguments:
min_support -- The minimum support of relations (float).
min_confidence -- The minimum confidence of relations (float).
min_lift -- The minimum lift of relations (float).
max_length -- The maximum length of the relation (integer).
"""
# Parse the arguments.
min_support = kwargs.get('min_support', 0.1)
min_confidence = kwargs.get('min_confidence', 0.0)
min_lift = kwargs.get('min_lift', 0.0)
max_length = kwargs.get('max_length', None)
# Check arguments.
if min_support <= 0:
raise ValueError('minimum support must be > 0')
# For testing.
_gen_support_records = kwargs.get(
'_gen_support_records', gen_support_records)
_gen_ordered_statistics = kwargs.get(
'_gen_ordered_statistics', gen_ordered_statistics)
_filter_ordered_statistics = kwargs.get(
'_filter_ordered_statistics', filter_ordered_statistics)
# Calculate supports.
transaction_manager = TransactionManager.create(transactions)
support_records = _gen_support_records(
transaction_manager, min_support, max_length=max_length)
# Calculate ordered stats.
for support_record in support_records:
ordered_statistics = list(
_filter_ordered_statistics(
_gen_ordered_statistics(transaction_manager, support_record),
min_confidence=min_confidence,
min_lift=min_lift,
)
)
if not ordered_statistics:
continue
yield RelationRecord(
support_record.items, support_record.support, ordered_statistics)
################################################################################
# Application functions.
################################################################################
def parse_args(argv):
"""
Parse commandline arguments.
Arguments:
argv -- An argument list without the program name.
"""
output_funcs = {
'json': dump_as_json,
'tsv': dump_as_two_item_tsv,
}
default_output_func_key = 'json'
parser = argparse.ArgumentParser()
parser.add_argument(
'-v', '--version', action='version',
version='%(prog)s {0}'.format(__version__))
parser.add_argument(
'input', metavar='inpath', nargs='*',
help='Input transaction file (default: stdin).',
type=argparse.FileType('r'), default=[sys.stdin])
parser.add_argument(
'-o', '--output', metavar='outpath',
help='Output file (default: stdout).',
type=argparse.FileType('w'), default=sys.stdout)
parser.add_argument(
'-l', '--max-length', metavar='int',
help='Max length of relations (default: infinite).',
type=int, default=None)
parser.add_argument(
'-s', '--min-support', metavar='float',
help='Minimum support ratio (must be > 0, default: 0.1).',
type=float, default=0.1)
parser.add_argument(
'-c', '--min-confidence', metavar='float',
help='Minimum confidence (default: 0.5).',
type=float, default=0.5)
parser.add_argument(
'-t', '--min-lift', metavar='float',
help='Minimum lift (default: 0.0).',
type=float, default=0.0)
parser.add_argument(
'-d', '--delimiter', metavar='str',
help='Delimiter for items of transactions (default: tab).',
type=str, default='\t')
parser.add_argument(
'-f', '--out-format', metavar='str',
help='Output format ({0}; default: {1}).'.format(
', '.join(output_funcs.keys()), default_output_func_key),
type=str, choices=output_funcs.keys(), default=default_output_func_key)
args = parser.parse_args(argv)
args.output_func = output_funcs[args.out_format]
return args
def load_transactions(input_file, **kwargs):
"""
Load transactions and returns a generator for transactions.
Arguments:
input_file -- An input file.
Keyword arguments:
delimiter -- The delimiter of the transaction.
"""
delimiter = kwargs.get('delimiter', '\t')
for transaction in csv.reader(input_file, delimiter=delimiter):
yield transaction if transaction else ['']
def dump_as_json(record, output_file):
"""
Dump an relation record as a json value.
Arguments:
record -- A RelationRecord instance to dump.
output_file -- A file to output.
"""
def default_func(value):
"""
Default conversion for JSON value.
"""
if isinstance(value, frozenset):
return sorted(value)
raise TypeError(repr(value) + " is not JSON serializable")
converted_record = record._replace(
ordered_statistics=[x._asdict() for x in record.ordered_statistics])
json.dump(
converted_record._asdict(), output_file,
default=default_func, ensure_ascii=False)
output_file.write(os.linesep)
def dump_as_two_item_tsv(record, output_file):
"""
Dump a relation record as TSV only for 2 item relations.
Arguments:
record -- A RelationRecord instance to dump.
output_file -- A file to output.
"""
for ordered_stats in record.ordered_statistics:
if len(ordered_stats.items_base) != 1:
continue
if len(ordered_stats.items_add) != 1:
continue
output_file.write('{0}\t{1}\t{2:.8f}\t{3:.8f}\t{4:.8f}{5}'.format(
list(ordered_stats.items_base)[0], list(ordered_stats.items_add)[0],
record.support, ordered_stats.confidence, ordered_stats.lift,
os.linesep))
def main(**kwargs):
"""
Executes Apriori algorithm and print its result.
"""
# For tests.
_parse_args = kwargs.get('_parse_args', parse_args)
_load_transactions = kwargs.get('_load_transactions', load_transactions)
_apriori = kwargs.get('_apriori', apriori)
args = _parse_args(sys.argv[1:])
transactions = _load_transactions(
chain(*args.input), delimiter=args.delimiter)
result = _apriori(
transactions,
max_length=args.max_length,
min_support=args.min_support,
min_confidence=args.min_confidence)
for record in result:
args.output_func(record, args.output)
if __name__ == '__main__':
main()