-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathhand_detection1.py
61 lines (49 loc) · 2.23 KB
/
hand_detection1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import cv2
import numpy as np
from sklearn.metrics import pairwise
cap = cv2.VideoCapture(0)
kernelOpen = np.ones((5,5))#if jiggers are present other than yellow area
kernelClose = np.ones((20,20)) #if jiggers are present in yellow area
#HSV color range which should be detected
lb = np.array([20,100,100])
ub = np.array([120,255,255])
while True:
ret, frame = cap.read()
flipped = cv2.flip(frame, 1)
flipped = cv2.resize(flipped,(500,400))
#use HSV of yellow to detect only yellow color
imgSeg = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
imgSegFlipped = cv2.flip(imgSeg, 1)
imgSegFlipped = cv2.resize(imgSegFlipped,(500,400))
#masking and filtering all shades of yellow
mask = cv2.inRange(imgSegFlipped, lb, ub)
mask = cv2.resize(mask,(500,400))
#apply morphology to avoid jiggers
maskOpen = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernelOpen)
maskOpen = cv2.resize(maskOpen,(500,400))
maskClose = cv2.morphologyEx(maskOpen, cv2.MORPH_CLOSE, kernelClose)
maskClose = cv2.resize(maskClose,(500,400))
final = maskClose
_, conts, h = cv2.findContours(maskClose,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
if(len(conts)!=0): #draws the contours of that object which has the highest
b = max(conts, key=cv2.contourArea)
west = tuple(b[b[:, :, 0].argmin()][0]) #gives the co-ordinate of the left extreme of contour
east = tuple(b[b[:, :, 0].argmax()][0]) #above for east i.e right
north = tuple(b[b[:, :, 1].argmin()][0])
south = tuple(b[b[:, :, 1].argmax()][0])
centre_x = (west[0]+east[0])/2
centre_y = (north[0]+south[0])/2
cv2.drawContours(flipped, b, -1, (0,255,0), 3)
cv2.circle(flipped, west, 6, (0,0,255), -1)
cv2.circle(flipped, east, 6, (0,0,255), -1)
cv2.circle(flipped, north, 6, (0,0,255), -1)
cv2.circle(flipped, south, 6, (0,0,255), -1)
cv2.circle(flipped, (int(centre_x),int(centre_y)), 6, (255,0,0), -1)#plots centre of the area
cv2.imshow('video', flipped)
#cv2.imshow('mask', mask)
#cv2.imshow('mask open', maskOpen)
#cv2.imshow('mask close', maskClose)
if cv2.waitKey(1) & 0xFF == ord(' '):#exiting
break
cap.release()
cv2.destroyAllWindows()