forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConditionalGAN-mnist.py
executable file
·149 lines (119 loc) · 4.77 KB
/
ConditionalGAN-mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: ConditionalGAN-mnist.py
# Author: Yuxin Wu
import argparse
import numpy as np
import os
import cv2
import tensorflow as tf
from tensorpack import *
from tensorpack.dataflow import dataset
from tensorpack.tfutils.scope_utils import auto_reuse_variable_scope
from tensorpack.utils.viz import interactive_imshow, stack_patches
from GAN import GANModelDesc, GANTrainer, RandomZData
"""
To train:
./ConditionalGAN-mnist.py
To visualize:
./ConditionalGAN-mnist.py --sample --load path/to/model
A pretrained model is at http://models.tensorpack.com/GAN/
"""
BATCH = 128
def batch_flatten(x):
"""
Flatten the tensor except the first dimension.
"""
shape = x.get_shape().as_list()[1:]
if None not in shape:
return tf.reshape(x, [-1, int(np.prod(shape))])
return tf.reshape(x, tf.stack([tf.shape(x)[0], -1]))
class Model(GANModelDesc):
def inputs(self):
return [tf.TensorSpec((None, 28, 28), tf.float32, 'input'),
tf.TensorSpec((None,), tf.int32, 'label')]
def generator(self, z, y):
l = FullyConnected('fc0', tf.concat([z, y], 1), 1024, activation=BNReLU)
l = FullyConnected('fc1', tf.concat([l, y], 1), 64 * 2 * 7 * 7, activation=BNReLU)
l = tf.reshape(l, [-1, 7, 7, 64 * 2])
y = tf.reshape(y, [-1, 1, 1, 10])
l = tf.concat([l, tf.tile(y, [1, 7, 7, 1])], 3)
l = Conv2DTranspose('deconv1', l, 64 * 2, 5, 2, activation=BNReLU)
l = tf.concat([l, tf.tile(y, [1, 14, 14, 1])], 3)
l = Conv2DTranspose('deconv2', l, 1, 5, 2, activation=tf.identity)
l = tf.nn.tanh(l, name='gen')
return l
@auto_reuse_variable_scope
def discriminator(self, imgs, y):
""" return a (b, 1) logits"""
yv = y
y = tf.reshape(y, [-1, 1, 1, 10])
with argscope(Conv2D, kernel_size=5, strides=1):
l = (LinearWrap(imgs)
.ConcatWith(tf.tile(y, [1, 28, 28, 1]), 3)
.Conv2D('conv0', 11)
.tf.nn.leaky_relu()
.ConcatWith(tf.tile(y, [1, 14, 14, 1]), 3)
.Conv2D('conv1', 74)
.BatchNorm('bn1')
.tf.nn.leaky_relu()
.apply(batch_flatten)
.ConcatWith(yv, 1)
.FullyConnected('fc1', 1024, activation=tf.identity)
.BatchNorm('bn2')
.tf.nn.leaky_relu()
.ConcatWith(yv, 1)
.FullyConnected('fct', 1, activation=tf.identity)())
return l
def build_graph(self, image_pos, y):
image_pos = tf.expand_dims(image_pos * 2.0 - 1, -1)
y = tf.one_hot(y, 10, name='label_onehot')
z = tf.random_uniform([BATCH, 100], -1, 1, name='z_train')
z = tf.placeholder_with_default(z, [None, 100], name='z') # clear the static shape
with argscope([Conv2D, Conv2DTranspose, FullyConnected],
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02)):
with tf.variable_scope('gen'):
image_gen = self.generator(z, y)
tf.summary.image('gen', image_gen, 30)
with tf.variable_scope('discrim'):
vecpos = self.discriminator(image_pos, y)
vecneg = self.discriminator(image_gen, y)
self.build_losses(vecpos, vecneg)
self.collect_variables()
def optimizer(self):
return tf.train.AdamOptimizer(2e-4, beta1=0.5, epsilon=1e-3)
def get_data():
ds = ConcatData([dataset.Mnist('train'), dataset.Mnist('test')])
return BatchData(ds, BATCH)
def sample(model_path):
pred = PredictConfig(
session_init=get_model_loader(model_path),
model=Model(),
input_names=['label', 'z'],
output_names=['gen/gen'])
ds = MapData(RandomZData((100, 100)),
lambda dp: [np.arange(100) % 10, dp[0]])
pred = SimpleDatasetPredictor(pred, ds)
for o in pred.get_result():
o = o[0] * 255.0
viz = stack_patches(o, nr_row=10, nr_col=10)
viz = cv2.resize(viz, (800, 800))
interactive_imshow(viz)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--load', help='load model')
parser.add_argument('--sample', action='store_true')
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if args.sample:
sample(args.load)
else:
logger.auto_set_dir()
GANTrainer(QueueInput(get_data()), Model()).train_with_defaults(
callbacks=[ModelSaver()],
steps_per_epoch=500,
max_epoch=100,
session_init=SaverRestore(args.load) if args.load else None
)