forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembedding_data.py
61 lines (45 loc) · 1.76 KB
/
embedding_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# -*- coding: utf-8 -*-
# File: embedding_data.py
# Author: tensorpack contributors
import numpy as np
from tensorpack.dataflow import BatchData, dataset
def get_test_data(batch=128):
ds = dataset.Mnist('test')
ds = BatchData(ds, batch)
return ds
def get_digits_by_label(images, labels):
data_dict = []
for clazz in range(0, 10):
clazz_filter = np.where(labels == clazz)
data_dict.append(list(images[clazz_filter].reshape((-1, 28, 28))))
return data_dict
class MnistPairs(dataset.Mnist):
"""We could also write
.. code::
ds = dataset.Mnist('train')
ds = JoinData([ds, ds])
ds = MapData(ds, lambda dp: [dp[0], dp[2], dp[1] == dp[3]])
ds = BatchData(ds, 128 // 2)
but then the positives pairs would be really rare (p=0.1).
"""
def __init__(self, train_or_test):
super(MnistPairs, self).__init__(train_or_test, shuffle=False)
# now categorize these digits
self.data_dict = get_digits_by_label(self.images, self.labels)
def pick(self, label):
idx = self.rng.randint(len(self.data_dict[label]))
return self.data_dict[label][idx].astype(np.float32)
def __iter__(self):
while True:
y = self.rng.randint(2)
if y == 0:
pick_label, pick_other = self.rng.choice(10, size=2, replace=False)
else:
pick_label = self.rng.randint(10)
pick_other = pick_label
yield [self.pick(pick_label), self.pick(pick_other), y]
class MnistTriplets(MnistPairs):
def __iter__(self):
while True:
pick_label, pick_other = self.rng.choice(10, size=2, replace=False)
yield [self.pick(pick_label), self.pick(pick_label), self.pick(pick_other)]