-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathdataset.py
279 lines (232 loc) · 9.84 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
import numpy as np
from PIL import Image
from shapely.geometry import LineString
from scipy.spatial.distance import cdist
import torch
import torch.utils.data as data
from misc import panostretch
class PanoCorBonDataset(data.Dataset):
'''
See README.md for how to prepare the dataset.
'''
def __init__(self, root_dir,
flip=False, rotate=False, gamma=False, stretch=False,
p_base=0.96, max_stretch=2.0,
normcor=False, return_cor=False, return_path=False):
self.img_dir = os.path.join(root_dir, 'img')
self.cor_dir = os.path.join(root_dir, 'label_cor')
self.img_fnames = sorted([
fname for fname in os.listdir(self.img_dir)
if fname.endswith('.jpg') or fname.endswith('.png')
])
self.txt_fnames = ['%s.txt' % fname[:-4] for fname in self.img_fnames]
self.flip = flip
self.rotate = rotate
self.gamma = gamma
self.stretch = stretch
self.p_base = p_base
self.max_stretch = max_stretch
self.normcor = normcor
self.return_cor = return_cor
self.return_path = return_path
self._check_dataset()
def _check_dataset(self):
for fname in self.txt_fnames:
assert os.path.isfile(os.path.join(self.cor_dir, fname)),\
'%s not found' % os.path.join(self.cor_dir, fname)
def __len__(self):
return len(self.img_fnames)
def __getitem__(self, idx):
# Read image
img_path = os.path.join(self.img_dir,
self.img_fnames[idx])
img = np.array(Image.open(img_path), np.float32)[..., :3] / 255.
H, W = img.shape[:2]
# Read ground truth corners
with open(os.path.join(self.cor_dir,
self.txt_fnames[idx])) as f:
cor = np.array([line.strip().split() for line in f if line.strip()], np.float32)
# Corner with minimum x should at the beginning
cor = np.roll(cor[:, :2], -2 * np.argmin(cor[::2, 0]), 0)
# Detect occlusion
occlusion = find_occlusion(cor[::2].copy()).repeat(2)
assert (np.abs(cor[0::2, 0] - cor[1::2, 0]) > W/100).sum() == 0, img_path
assert (cor[0::2, 1] > cor[1::2, 1]).sum() == 0, img_path
# Stretch augmentation
if self.stretch:
xmin, ymin, xmax, ymax = cor2xybound(cor)
kx = np.random.uniform(1.0, self.max_stretch)
ky = np.random.uniform(1.0, self.max_stretch)
if np.random.randint(2) == 0:
kx = max(1 / kx, min(0.5 / xmin, 1.0))
else:
kx = min(kx, max(10.0 / xmax, 1.0))
if np.random.randint(2) == 0:
ky = max(1 / ky, min(0.5 / ymin, 1.0))
else:
ky = min(ky, max(10.0 / ymax, 1.0))
img, cor = panostretch.pano_stretch(img, cor, kx, ky)
# Prepare 1d ceiling-wall/floor-wall boundary
bon = cor_2_1d(cor, H, W)
# Random flip
if self.flip and np.random.randint(2) == 0:
img = np.flip(img, axis=1)
bon = np.flip(bon, axis=1)
cor[:, 0] = img.shape[1] - 1 - cor[:, 0]
# Random horizontal rotate
if self.rotate:
dx = np.random.randint(img.shape[1])
img = np.roll(img, dx, axis=1)
bon = np.roll(bon, dx, axis=1)
cor[:, 0] = (cor[:, 0] + dx) % img.shape[1]
# Random gamma augmentation
if self.gamma:
p = np.random.uniform(1, 2)
if np.random.randint(2) == 0:
p = 1 / p
img = img ** p
# Prepare 1d wall-wall probability
corx = cor[~occlusion, 0]
dist_o = cdist(corx.reshape(-1, 1),
np.arange(img.shape[1]).reshape(-1, 1),
p=1)
dist_r = cdist(corx.reshape(-1, 1),
np.arange(img.shape[1]).reshape(-1, 1) + img.shape[1],
p=1)
dist_l = cdist(corx.reshape(-1, 1),
np.arange(img.shape[1]).reshape(-1, 1) - img.shape[1],
p=1)
dist = np.min([dist_o, dist_r, dist_l], 0)
nearest_dist = dist.min(0)
y_cor = (self.p_base ** nearest_dist).reshape(1, -1)
# Convert all data to tensor
x = torch.FloatTensor(img.transpose([2, 0, 1]).copy())
bon = torch.FloatTensor(bon.copy())
y_cor = torch.FloatTensor(y_cor.copy())
# Check whether additional output are requested
out_lst = [x, bon, y_cor]
if self.return_cor:
out_lst.append(cor)
if self.return_path:
out_lst.append(img_path)
return out_lst
def cor_2_1d(cor, H, W):
bon_ceil_x, bon_ceil_y = [], []
bon_floor_x, bon_floor_y = [], []
n_cor = len(cor)
for i in range(n_cor // 2):
xys = panostretch.pano_connect_points(cor[i*2],
cor[(i*2+2) % n_cor],
z=-50, w=W, h=H)
bon_ceil_x.extend(xys[:, 0])
bon_ceil_y.extend(xys[:, 1])
for i in range(n_cor // 2):
xys = panostretch.pano_connect_points(cor[i*2+1],
cor[(i*2+3) % n_cor],
z=50, w=W, h=H)
bon_floor_x.extend(xys[:, 0])
bon_floor_y.extend(xys[:, 1])
bon_ceil_x, bon_ceil_y = sort_xy_filter_unique(bon_ceil_x, bon_ceil_y, y_small_first=True)
bon_floor_x, bon_floor_y = sort_xy_filter_unique(bon_floor_x, bon_floor_y, y_small_first=False)
bon = np.zeros((2, W))
bon[0] = np.interp(np.arange(W), bon_ceil_x, bon_ceil_y, period=W)
bon[1] = np.interp(np.arange(W), bon_floor_x, bon_floor_y, period=W)
bon = ((bon + 0.5) / H - 0.5) * np.pi
return bon
def sort_xy_filter_unique(xs, ys, y_small_first=True):
xs, ys = np.array(xs), np.array(ys)
idx_sort = np.argsort(xs + ys / ys.max() * (int(y_small_first)*2-1))
xs, ys = xs[idx_sort], ys[idx_sort]
_, idx_unique = np.unique(xs, return_index=True)
xs, ys = xs[idx_unique], ys[idx_unique]
assert np.all(np.diff(xs) > 0)
return xs, ys
def find_occlusion(coor):
u = panostretch.coorx2u(coor[:, 0])
v = panostretch.coory2v(coor[:, 1])
x, y = panostretch.uv2xy(u, v, z=-50)
occlusion = []
for i in range(len(x)):
raycast = LineString([(0, 0), (x[i], y[i])])
other_layout = []
for j in range(i+1, len(x)):
other_layout.append((x[j], y[j]))
for j in range(0, i):
other_layout.append((x[j], y[j]))
other_layout = LineString(other_layout)
occlusion.append(raycast.intersects(other_layout))
return np.array(occlusion)
def cor2xybound(cor):
''' Helper function to clip max/min stretch factor '''
corU = cor[0::2]
corB = cor[1::2]
zU = -50
u = panostretch.coorx2u(corU[:, 0])
vU = panostretch.coory2v(corU[:, 1])
vB = panostretch.coory2v(corB[:, 1])
x, y = panostretch.uv2xy(u, vU, z=zU)
c = np.sqrt(x**2 + y**2)
zB = c * np.tan(vB)
xmin, xmax = x.min(), x.max()
ymin, ymax = y.min(), y.max()
S = 3 / abs(zB.mean() - zU)
dx = [abs(xmin * S), abs(xmax * S)]
dy = [abs(ymin * S), abs(ymax * S)]
return min(dx), min(dy), max(dx), max(dy)
def visualize_a_data(x, y_bon, y_cor):
x = (x.numpy().transpose([1, 2, 0]) * 255).astype(np.uint8)
y_bon = y_bon.numpy()
y_bon = ((y_bon / np.pi + 0.5) * x.shape[0]).round().astype(int)
y_cor = y_cor.numpy()
gt_cor = np.zeros((30, 1024, 3), np.uint8)
gt_cor[:] = y_cor[0][None, :, None] * 255
img_pad = np.zeros((3, 1024, 3), np.uint8) + 255
img_bon = (x.copy() * 0.5).astype(np.uint8)
y1 = np.round(y_bon[0]).astype(int)
y2 = np.round(y_bon[1]).astype(int)
y1 = np.vstack([np.arange(1024), y1]).T.reshape(-1, 1, 2)
y2 = np.vstack([np.arange(1024), y2]).T.reshape(-1, 1, 2)
img_bon[y_bon[0], np.arange(len(y_bon[0])), 1] = 255
img_bon[y_bon[1], np.arange(len(y_bon[1])), 1] = 255
return np.concatenate([gt_cor, img_pad, img_bon], 0)
if __name__ == '__main__':
import argparse
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument('--root_dir', default='data/valid/')
parser.add_argument('--ith', default=0, type=int,
help='Pick a data id to visualize.'
'-1 for visualize all data')
parser.add_argument('--flip', action='store_true',
help='whether to random flip')
parser.add_argument('--rotate', action='store_true',
help='whether to random horizon rotation')
parser.add_argument('--gamma', action='store_true',
help='whether to random luminance change')
parser.add_argument('--stretch', action='store_true',
help='whether to random pano stretch')
parser.add_argument('--out_dir', default='sample_dataset_visualization')
args = parser.parse_args()
os.makedirs(args.out_dir, exist_ok=True)
print('args:')
for key, val in vars(args).items():
print(' {:16} {}'.format(key, val))
dataset = PanoCorBonDataset(
root_dir=args.root_dir,
flip=args.flip, rotate=args.rotate, gamma=args.gamma, stretch=args.stretch,
return_path=True)
# Showing some information about dataset
print('len(dataset): {}'.format(len(dataset)))
x, y_bon, y_cor, path = dataset[0]
print('x', x.size())
print('y_bon', y_bon.size())
print('y_cor', y_cor.size())
if args.ith >= 0:
to_visualize = [dataset[args.ith]]
else:
to_visualize = dataset
for x, y_bon, y_cor, path in tqdm(to_visualize):
fname = os.path.split(path)[-1]
out = visualize_a_data(x, y_bon, y_cor)
Image.fromarray(out).save(os.path.join(args.out_dir, fname))