-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinverse.py
43 lines (34 loc) · 1.09 KB
/
inverse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# -*- coding: utf-8 -*-
import numpy as np
from lu_decomposition.lu_decomp import LU_Decomp
from kahan_floats.kahan import K_sum
def inverse(A):
"""
Outputs inverse of a matrix A with (N,N) dimension
Input:
- A: a numpy array of shape (N,N)
Output:
- a numpy arrau of shape(N,N)
"""
N = A.shape[0]
P, L, U = LU_Decomp(A).decomp()
P = P.T
y = np.zeros_like(L) # Ly = P for y
for i in range(N):
for j in range(N):
sum_obj = K_sum()
for k in range(i):
sum_obj.add(L[i,k]*y[k,j])
s = sum_obj.current_sum()
numerator = P[i,j] - s
y[i,j] = numerator / L[i,i]
x = np.zeros_like(U) # Ux = y for x
for i in range(N-1, -1, -1):
for j in range(N):
sum_obj = K_sum()
for k in range(N-1, i, -1):
sum_obj.add(U[i,k]*x[k,j])
s = sum_obj.current_sum()
numerator = y[i,j] - s
x[i,j] = numerator / U[i,i]
return x