-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathElementsTests.fs
345 lines (272 loc) · 13.1 KB
/
ElementsTests.fs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
namespace Elements
open Xunit
open Xunit.Abstractions
open FsUnit.Xunit
open Tensor
open Tensor.Algorithm
module DerivCheck =
/// evaluates the Jacobian of f at x numerically with specified finite difference step
let inline numDerivEpsilon (epsilon: 'T) (f: Tensor<'T> -> Tensor<'T>) (x: Tensor<'T>) =
let y = f x
let xElems, yElems = Tensor.nElems x, Tensor.nElems y
let xShp = Tensor.shape x
let jac = Tensor.zeros x.Dev [yElems; xElems]
let xd = x |> Tensor.reshape [xElems] |> Tensor.copy
for xi in 0L .. xElems-1L do
let xiVal = xd.[[xi]]
// f (x+epsilon)
xd.[[xi]] <- xiVal + epsilon
let ydf = xd |> Tensor.reshape xShp |> f |> Tensor.reshape [yElems]
// f (x-epsilon)
xd.[[xi]] <- xiVal - epsilon
let ydb = xd |> Tensor.reshape xShp |> f |> Tensor.reshape [yElems]
// [f (x+epsilon) - f (x-epsilon)] / (2 * epsilon)
jac.[*, xi] <- (ydf - ydb) / (Tensor.scalar ydf.Dev (epsilon + epsilon))
xd.[[xi]] <- xiVal
jac
/// evaluates the Jacobian of f at x numerically
let numDeriv f x =
numDerivEpsilon 1e-5 f x
let numDerivOfFunc argEnv (fn: Elements.ElemFunc) xName =
let f xv = Elements.evalFunc (argEnv |> Map.add xName xv) fn
numDeriv f argEnv.[xName]
/// Calculates the Jacobian using the derivative of a function.
let jacobianOfDerivFunc argEnv dInArg (dFn: Elements.ElemFunc) =
let outElems = dFn.Shape |> List.fold (*) 1L
let inElems = dFn.ArgShapes.[dInArg] |> List.fold (*) 1L
let jac = HostTensor.zeros [inElems; outElems]
for i in 0L .. inElems-1L do
let dIn = HostTensor.zeros [inElems]
dIn.[[i]] <- 1.0
let dIn = dIn |> Tensor.reshape dFn.ArgShapes.[dInArg]
let dArgEnv = argEnv |> Map.add dInArg dIn
let dOut = Elements.evalFunc dArgEnv dFn
jac.[i, *] <- Tensor.flatten dOut
jac
type ElementsTests (output: ITestOutputHelper) =
let printfn format = Printf.kprintf (fun msg -> output.WriteLine(msg)) format
let checkFuncDerivs orders argEnv fn =
let rec doCheck order fn =
let dFns = Elements.derivFunc fn
let dInArg = "d" + fn.Name
printfn "Checking %d. derivative of: %A" order fn
for KeyValue(v, dFn) in dFns do
printfn "%d. derivative of %s w.r.t. %s: %A" order fn.Name v dFn
let nJac = DerivCheck.numDerivOfFunc argEnv fn v
let aJac = DerivCheck.jacobianOfDerivFunc argEnv dInArg dFn
if not (Tensor.almostEqual (nJac, aJac, 1e-3, 1e-3)) then
printfn "Analytic Jacobian:\n%A" aJac
printfn "Numeric Jacobian:\n%A" nJac
printfn "Jacobian mismatch!!"
failwith "Jacobian mismatch in function derivative check"
else
//printfn "Analytic Jacobian:\n%A" aJac
//printfn "Numeric Jacobian:\n%A" nJac
//printfn "Analytic and numeric Jacobians match."
()
if order < orders then
doCheck (order+1) dFn
doCheck 1 fn
let randomDerivCheck orders iters (fn: Elements.ElemFunc) =
let rnd = System.Random 123
let rndTensor shp = HostTensor.randomUniform rnd (-1., 1.) shp
for i in 1 .. iters do
let argEnv =
seq {
if orders=2 then yield "d" + fn.Name, rndTensor fn.Shape
for KeyValue(name, shp) in fn.ArgShapes do
yield name, rndTensor shp
if orders=2 then yield "d" + name, rndTensor shp
if orders=2 then yield "dd" + name, rndTensor shp
} |> Map.ofSeq
checkFuncDerivs orders argEnv fn
[<Fact>]
let ``EvalTest1`` () =
let i, iSize = Elements.pos "i", 3L
let j, jSize = Elements.pos "j", 4L
let k, kSize = Elements.pos "k", 5L
let xv = HostTensor.zeros [iSize; jSize] + 1.0
let yv = HostTensor.zeros [jSize; jSize] + 2.0
let zv = HostTensor.zeros [kSize] + 3.0
let dimNames = [i.Name; j.Name; k.Name]
let dimSizes = Map [i.Name, iSize; j.Name, jSize; k.Name, kSize]
let argShapes = Map ["x", xv.Shape; "y", yv.Shape; "z", zv.Shape]
let expr = Elements.arg "x" [i; j] + 2.0 * (Elements.arg "y" [j; j] * (Elements.arg "z" [k])**3.0)
let func = Elements.func "f" dimNames dimSizes argShapes expr
printfn "Evaluating:"
printfn "x=\n%A" xv
printfn "y=\n%A" yv
printfn "z=\n%A" zv
let argEnv = Map ["x", xv; "y", yv; "z", zv]
let fv = Elements.evalFunc argEnv func
printfn "f=\n%A" fv
[<Fact>]
let ``DerivTest1`` () =
let i, iSize = Elements.pos "i", 3L
let j, jSize = Elements.pos "j", 4L
let k, kSize = Elements.pos "k", 5L
let xv = HostTensor.zeros [iSize; jSize] + 1.0
let yv = HostTensor.zeros [jSize; jSize] + 2.0
let zv = HostTensor.zeros [kSize] + 3.0
let dimNames = [i.Name; j.Name; k.Name]
let dimSizes = Map [i.Name, iSize; j.Name, jSize; k.Name, kSize]
let argShapes = Map ["x", xv.Shape; "y", yv.Shape; "z", zv.Shape]
let expr = Elements.arg "x" [i; j] + 2.0 * (Elements.arg "y" [j; j] * (Elements.arg "z" [k])**3.0)
let func = Elements.func "f" dimNames dimSizes argShapes expr
printfn "%A" func
printfn "Ranges: %A" dimSizes
let dFns = Elements.derivFunc func
printfn "dFns:"
for KeyValue(_, dFn) in dFns do
printfn "%A" dFn
[<Fact>]
let ``DerivTest2`` () =
let i, iSize = Elements.pos "i", 3L
let j, jSize = Elements.pos "j", 4L
let k, kSize = Elements.pos "k", 5L
let xv = HostTensor.zeros [iSize; jSize] + 1.0
let yv = HostTensor.zeros [jSize; jSize] + 2.0
let zv = HostTensor.zeros [kSize] + 3.0
let dimNames = [i.Name; j.Name; k.Name]
let dimSizes = Map [i.Name, iSize; j.Name, jSize; k.Name, kSize]
let argShapes = Map ["x", xv.Shape]
let expr = Elements.arg "x" [Rat 2*i; j]
let func = Elements.func "f" dimNames dimSizes argShapes expr
printfn "%A" func
printfn "Ranges: %A" dimSizes
let dFns = Elements.derivFunc func
printfn "dFns:"
for KeyValue(_, dFn) in dFns do
printfn "%A" dFn
[<Fact>]
let ``DerivTest3`` () =
let i, iSize = Elements.pos "i", 3L
let s, sSize = Elements.pos "s", 7L
let dimNames = [i.Name]
let dimSizes = Map [i.Name, iSize]
let argShapes = Map ["x", [iSize; 10L]]
let summand = Elements.arg "x" [i; s]
let expr = Elements.sumConstRng "s" 0L (sSize-1L) summand
let func = Elements.func "f" dimNames dimSizes argShapes expr
printfn "%A" func
printfn "Ranges: %A" dimSizes
let dFns = Elements.derivFunc func
printfn "dFns:"
for KeyValue(_, dFn) in dFns do
printfn "%A" dFn
[<Fact>]
let ``DerivTest4`` () =
let i, iSize = Elements.pos "i", 7L
let dimNames = [i.Name]
let dimSizes = Map [i.Name, iSize]
let argShapes = Map ["x", [10L]]
let expr = Elements.arg "x" [i + Elements.idxConst (Rat 2)]
let func = Elements.func "f" dimNames dimSizes argShapes expr
printfn "%A" func
printfn "Ranges: %A" dimSizes
let dFns = Elements.derivFunc func
printfn "dFns:"
for KeyValue(_, dFn) in dFns do
printfn "%A" dFn
[<Fact>]
let ``DerivCheck1`` () =
let i, iSize = Elements.pos "i", 3L
let j, jSize = Elements.pos "j", 4L
let k, kSize = Elements.pos "k", 5L
let rnd = System.Random 123
let xv = HostTensor.randomUniform rnd (0., 1.) [iSize; jSize]
let yv = HostTensor.randomUniform rnd (0., 1.) [jSize; jSize]
let zv = HostTensor.randomUniform rnd (0., 1.) [kSize]
let dimNames = [i.Name; j.Name; k.Name]
let dimSizes = Map [i.Name, iSize; j.Name, jSize; k.Name, kSize]
let argShapes = Map ["x", xv.Shape; "y", yv.Shape; "z", zv.Shape]
let expr = Elements.arg "x" [i; j] ** 2.0 + 2.0 * (Elements.arg "y" [j; j] * (Elements.arg "z" [k])**3.0)
let func = Elements.func "f" dimNames dimSizes argShapes expr
printfn "x=\n%A" xv
printfn "y=\n%A" yv
printfn "z=\n%A" zv
let argEnv = Map ["x", xv; "y", yv; "z", zv]
let fv = Elements.evalFunc argEnv func
checkFuncDerivs 1 argEnv func
[<Fact>]
let ``DerivCheck2`` () =
let i, iSize = Elements.pos "i", 3L
let j, jSize = Elements.pos "j", 4L
let k, kSize = Elements.pos "k", 5L
let dimNames = [i.Name; j.Name; k.Name]
let dimSizes = Map [i.Name, iSize; j.Name, jSize; k.Name, kSize]
let argShapes = Map ["x", [iSize; jSize]; "y", [jSize; jSize]; "z", [kSize]]
let expr = Elements.arg "x" [i; j] ** 2.0 + 2.0 * (Elements.arg "y" [j; j] * (Elements.arg "z" [k])**3.0)
let func = Elements.func "f" dimNames dimSizes argShapes expr
randomDerivCheck 2 3 func
[<Fact>]
let ``DerivCheck3`` () =
let r, rSize = Elements.pos "r", 2L
let s, sSize = Elements.pos "s", 3L
let n, nSize = Elements.pos "n", 4L
let dimNames = [r.Name; s.Name; n.Name]
let dimSizes = Map [r.Name, rSize; s.Name, sSize; n.Name, nSize]
let argShapes = Map ["Sigma", [sSize; nSize; nSize]; "mu", [sSize; nSize]; "V", [rSize; nSize]]
let Sigma = Elements.arg "Sigma"
let mu = Elements.arg "mu"
let V = Elements.arg "V"
let expr = // added **2 to Sigma to make it positive
sqrt (1. / (1. + 2. * Sigma[s;n;n]**2.)) * exp (- (mu[s;n] - V[r;n])**2. / (1. + 2. * Sigma[s;n;n]))
let func = Elements.func "S" dimNames dimSizes argShapes expr
randomDerivCheck 2 2 func
[<Fact>]
let ``DerivCheck4`` () =
let r, rSize = Elements.pos "r", 2L
let s, sSize = Elements.pos "s", 3L
let t, tSize = Elements.pos "t", 2L // =r
let n, nSize = Elements.pos "n", 4L
let dimNames = [r.Name; s.Name; t.Name; n.Name]
let dimSizes = Map [r.Name, rSize; s.Name, sSize; t.Name, tSize; n.Name, nSize]
let argShapes = Map ["Sigma", [sSize; nSize; nSize]; "mu", [sSize; nSize]; "V", [rSize; nSize]]
let Sigma = Elements.arg "Sigma"
let mu = Elements.arg "mu"
let V = Elements.arg "V"
let expr = // added **2 to Sigma to make it positive
sqrt (1. / (1. + 4. * Sigma[s;n;n]**2.)) * exp (- 2. * (mu[s;n] - (V[r;n] + V[t;n])/2.)**2. / (1. + 4. * Sigma[s;n;n]) -
(V[r;n] - V[t;n])**2. / 2.)
let func = Elements.func "S" dimNames dimSizes argShapes expr
randomDerivCheck 1 2 func
[<Fact>]
let ``DerivCheck5`` () =
let s, sSize = Elements.pos "s", 3L
let t, tSize = Elements.pos "t", 2L
let n, nSize = Elements.pos "n", 4L
let dimNames = [t.Name; n.Name]
let dimSizes = Map [t.Name, tSize; n.Name, nSize]
let argShapes = Map ["x", [nSize; sSize; 3L*sSize]; "y", [tSize; nSize]]
let x, y = Elements.arg "x", Elements.arg "y"
//let summand = y[t;n]
let summand = x[n ; s; Rat 2 * s]**2. + x[n; s; Rat 0 * s]**2. - y[t; Rat 0 * s]
let expr = y[t;n]**2. * Elements.sumConstRng "s" 0L (sSize-1L) summand
//let expr = Elements.simpleSum "s" 0L (sSize-1L) summand
let func = Elements.func "S" dimNames dimSizes argShapes expr
randomDerivCheck 1 5 func
[<Fact>]
let ``DerivCheck6`` () =
let s, sSize = Elements.pos "s", 3L
let t, tSize = Elements.pos "t", 10L
let dimNames = [s.Name; t.Name]
let dimSizes = Map [s.Name, sSize; t.Name, tSize]
let argShapes = Map ["x", [50L]]
let x = Elements.arg "x"
let expr = x[Rat 10*s+t]**2.
let func = Elements.func "f" dimNames dimSizes argShapes expr
randomDerivCheck 1 5 func
[<Fact>]
let ``DerivDemo`` () =
let i, iSize = Elements.pos "i", 3L
let j, jSize = Elements.pos "j", 4L
let k, kSize = Elements.pos "k", 5L // summation index
let dimNames = [i.Name; j.Name]
let dimSizes = Map [i.Name, iSize; j.Name, jSize]
let argShapes = Map ["a",[iSize; kSize]; "b",[jSize; kSize]; "c",[iSize; iSize]; "d",[iSize + kSize]]
let a, b, c, d = Elements.arg "a", Elements.arg "b", Elements.arg "c", Elements.arg "d"
let summand = (a[i;k] + b[j;k])**2. * c[i;i] + (d[i+k])**3.
let expr = exp (- Elements.sumConstRng "k" 0L (kSize-1L) summand)
let func = Elements.func "f" dimNames dimSizes argShapes expr
randomDerivCheck 1 5 func