@@ -4296,11 +4296,11 @@ Otherwise returns the value of X."
4296
4296
(defun +-rule-down (z x y)
4297
4297
; ; note: We can't assert that X and Y are integers when Z is an integer since
4298
4298
; ; Z may be an integer when X and Y are Gaussian integers. But we can
4299
- ; ; make such an assertion if either X or Y is real . If the Screamer
4299
+ ; ; make such an assertion if either X or Y is an integer . If the Screamer
4300
4300
; ; type system could distinguish Gaussian integers from other complex
4301
4301
; ; numbers we could make such an assertion whenever either X or Y was
4302
4302
; ; not a Gaussian integer.
4303
- (if (and (variable-integer? z) (or (variable-real ? x) (variable-real ? y)))
4303
+ (if (and (variable-integer? z) (or (variable-integer ? x) (variable-integer ? y)))
4304
4304
(restrict-integer! x))
4305
4305
; ; note: Ditto.
4306
4306
(if (and (variable-real? z) (or (variable-real? x) (variable-real? y)))
@@ -4427,11 +4427,11 @@ Otherwise returns the value of X."
4427
4427
(defun *-rule-down (z x y)
4428
4428
; ; note: We can't assert that X and Y are integers when Z is an integer since
4429
4429
; ; Z may be an integer when X and Y are Gaussian integers. But we can
4430
- ; ; make such an assertion if either X or Y is real . If the Screamer
4430
+ ; ; make such an assertion if either X or Y is an integer . If the Screamer
4431
4431
; ; type system could distinguish Gaussian integers from other complex
4432
4432
; ; numbers we could make such an assertion whenever either X or Y was
4433
4433
; ; not a Gaussian integer.
4434
- (if (and (variable-integer? z) (or (variable-real ? x) (variable-real ? y)))
4434
+ (if (and (variable-integer? z) (or (variable-integer ? x) (variable-integer ? y)))
4435
4435
(restrict-integer! x))
4436
4436
; ; note: Ditto.
4437
4437
(if (and (variable-real? z) (or (variable-real? x) (variable-real? y)))
0 commit comments