-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathload_consensus.py
100 lines (87 loc) · 4.04 KB
/
load_consensus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/usr/bin/env python
## Swift Biosciences 16S snapp workflow
## Author Benli Chai & Sukhinder Sandhu 20200502
import os
import time
import concurrent.futures
import alignment_parser
import numpy as np
RDPHOME = os.environ['RDPHOME']
def align_seqs(refseq, pe_seq_dict, tmp_dir):
read_ids = refseq.reads.keys()
#read_ids.sort() # changed as the next line for Python 3
read_ids = sorted(read_ids)
read_seqs = [pe_seq_dict[read_id] for read_id in read_ids]
read_count_list = []
#read count for both R1 and R2 reads
for read_id in read_ids:
read_count_list.append(refseq.count[read_id])
template_id = refseq.ID
template_seq = refseq.seq
read_filename = os.path.join(tmp_dir , template_id + '_reads.fasta')
template_filename = os.path.join(tmp_dir, template_id + '_temp.fasta')
#write the read sequences to a fasta file
out1 = open(read_filename, 'w')
for i in range(len(read_ids)):
r1_seq, r2_seq = read_seqs[i].split('N'*10)
#The PE reads have to be aligned separately
out1.write('>' + read_ids[i] + '_R1' + '\n' + r1_seq + '\n')
out1.write('>' + read_ids[i] + '_R2' + '\n' + r2_seq + '\n')
out1.close()
#write the template sequence to a fasta file
out2 = open(template_filename, 'w')
out2.write('>' + template_id + '\n' + template_seq)
out2.close()
#Run alignment tool align each read to the template in glocal mode
#collect alignment from stdout
aligned = os.popen('java -jar RDPHOME/AlignmentTools.jar pairwise-knn \
-k 1 READS TEMPLATE'.replace('READS', read_filename).\
replace('TEMPLATE', template_filename).replace('RDPHOME', RDPHOME)).readlines()
return (aligned, read_count_list)
def get_consensus(rdp_k1_alignment, count_list):
import pandas as pd
#convert the alignment into a dataframe of sequence/bases and frequencies
#of all reads into a frequence matrix exactly matching the dataframe of
#sequence/bases
count_array = [] #list of counts per sequence (row), and base (column)
aligned_array, read_ids = alignment_parser.get_align_array(rdp_k1_alignment)
for seq, count in zip(aligned_array, count_list):
base_count = []
for base in seq:
if base in ['A', 'T', 'G', 'C']:
base_count.append(count)
else:
base_count.append(0)
count_array.append(base_count)
aligned_df = pd.DataFrame(aligned_array)
count_df = pd.DataFrame(count_array)
#list of consensus bases
consensus = []
for i in range(len(aligned_df.columns)):
pos_df = pd.concat([aligned_df.iloc[:, i], count_df.iloc[:, i]], \
axis=1, keys=['base', 'count'])
##the base that has the highest frequency
base = pos_df.groupby('base').sum().idxmax()['count']
consensus.append(str(base))
consensus = ''.join(consensus)
#Replace common gaps with a fixed length (7) of 'N's
consensus = "NNNNNNN".join([region for region in consensus.split('-') \
if not region == ''])
return consensus
def consensus_loader(sample_id, refseq, pe_seq_dict, tmp_dir):
alignment, count_series = align_seqs(refseq, pe_seq_dict, tmp_dir)
size = round(np.array(count_series).sum(), 3) # total read count of this consensus sequence
consensus = get_consensus(alignment, count_series)
seq = '>' + refseq.ID + ';' + 'sample_id=' + sample_id + ';size=%s'%size + '\n' + consensus.strip().strip('N')
return seq
def load_consensus(sample_id, refset, pe_seq_dict, wd):
all_consensus = []
tmp_dir = os.path.join(wd, sample_id.split('_R1')[0])
os.system('mkdir %s'%tmp_dir)
with concurrent.futures.ProcessPoolExecutor(max_workers=8) as executor:
results = [executor.submit(consensus_loader, sample_id, refseq, pe_seq_dict, tmp_dir) \
for refseq in refset.values()]
for f in concurrent.futures.as_completed(results):
all_consensus.append(f.result())
os.system('rm -fr %s'%tmp_dir) #remove the tmp directory
return "\n".join(all_consensus)