forked from trungnt13/odin-ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
92 lines (86 loc) · 2.9 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from os import path
from setuptools import find_packages, setup
ODIN_VERSION = '1.4.0'
TENSORFLOW_VERSION = '2.5.0'
TFP_VERSION = '0.13.0'
PYTORCH_VERSION = '1.9.0+cu111'
PYTORCH_VISION = '0.10.0+cu111'
PYTORCH_AUDIO = '0.9.0'
# ===========================================================================
# Dependencies
# ===========================================================================
dependencies = [
'numpy',
'scipy',
f"tensorflow=={TENSORFLOW_VERSION}",
f'tensorflow-probability=={TFP_VERSION}',
# f'torch=={PYTORCH_VERSION}',
# f'torchvision=={PYTORCH_VISION}',
# f'torchaudio=={PYTORCH_AUDIO}',
# 'pyro-ppl',
'tensorflow-addons',
'tensorflow-datasets',
'transformers',
'hydra-core>=1.0.0',
'bigarray>=0.2.1',
'six',
'scikit-learn',
'matplotlib',
'decorator',
'tqdm',
'pyyaml',
'pycrypto',
'typeguard' # runtime type check
]
# ===========================================================================
# Description
# ===========================================================================
here = path.abspath(path.dirname(__file__))
long_description = \
'''
An end-to-end framework support multi-modal data processing
and fast prototyping of machine learning algorithm in form
of organized networks.
'''
# ===========================================================================
# Setup
# ===========================================================================
setup(
name='odin-ai',
version=ODIN_VERSION,
description="Deep learning for research and production",
long_description=long_description,
long_description_content_type='text/x-rst',
url='https://github.com/imito/odin-ai',
author='Trung Ngo Trong',
author_email='[email protected]',
license='MIT',
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Developers',
'Intended Audience :: Education',
'Intended Audience :: Science/Research',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Scientific/Engineering :: Information Analysis',
'Topic :: Scientific/Engineering :: Bio-Informatics',
'Topic :: Multimedia :: Sound/Audio :: Speech',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.7',
'Natural Language :: English',
'Operating System :: MacOS :: MacOS X',
'Operating System :: Microsoft :: Windows',
'Operating System :: POSIX :: Linux',
],
keywords=
'tensorflow pytorch machine learning neural networks deep learning bayesian',
packages=find_packages(exclude=['examples', 'examples/*', 'docs', 'tests']),
# scripts=['bin/speech-augmentation', 'bin/speech-test'],
setup_requires=['pip>=19.0'],
install_requires=dependencies,
extras_require={
'visualize': ['pydot>=1.2.4', 'colorama', 'seaborn'],
'tests': ['pytest', 'pandas', 'requests'],
'audio': ['soundfile', 'resampy'],
'docs': ['sphinx', 'sphinx_rtd_theme']
},
zip_safe=False)