forked from tysam-code/hlb-CIFAR10
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogging_utils.py
58 lines (49 loc) · 2.56 KB
/
logging_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from functools import partial
import platform
import torch
# We basically need to look up local variables by name so we can have the names, so we can pad to the proper column width.
# Printing stuff in the terminal can get tricky and this used to use an outside library, but some of the required stuff seemed even
# more heinous than this, unfortunately. So we switched to the "more simple" version of this!
def format_for_table(x, vars): return (f"{vars[x]}".rjust(len(x))) \
if type(vars[x]) == int else "{:0.4f}".format(vars[x]).rjust(len(x)) \
if vars[x] is not None \
else " "*len(x)
logging_columns_list = ['epoch', 'train_loss', 'val_loss',
'train_acc', 'val_acc', 'ema_val_acc', 'train_time']
# Print out our training details (sorry for the complexity, the whole logging business here is a bit of a hot mess once the columns need to be aligned and such....)
# define the printing function and print the column heads
def print_training_details(columns_list=logging_columns_list, separator_left='| ',
separator_right=' ', final="|", column_heads_only=False,
is_final_entry=False, vars=None):
if vars is not None:
columns_list = list(map(
partial(format_for_table, vars=vars), logging_columns_list)
)
print_string = ""
if column_heads_only:
for column_head_name in columns_list:
print_string += separator_left + column_head_name + separator_right
print_string += final
print('-'*(len(print_string))) # print the top bar
print(print_string)
print('-'*(len(print_string))) # print the bottom bar
else:
for column_value in columns_list:
print_string += separator_left + column_value + separator_right
print_string += final
print(print_string)
if is_final_entry:
print('-'*(len(print_string))) # print the final output bar
def print_headers():
# print out the training column heads before we print the actual content for each run.
print_training_details(column_heads_only=True)
def print_device_info(device_name):
device = torch.device(device_name)
print('Using device:', device)
print()
if device.type == 'cuda':
print(torch.cuda.get_device_name(0))
print('GPU Memory Allocated/Cached:', round(torch.cuda.memory_allocated(0)/1024**3,1), 'GB',
"//", round(torch.cuda.memory_reserved(0)/1024**3,1), 'GB')
elif device.type == 'cpu':
print("CPU: ", platform.processor())