-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupdate_database.py
44 lines (32 loc) · 1.16 KB
/
update_database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
"""
Update the dynamic data with the latest recommendations
"""
from dotenv import load_dotenv
from mangoleaf import Connection, query, recommend
def update_database(users, n=40, count_threshold=50):
db_engine = Connection().get()
update_params = dict(con=db_engine, if_exists="replace")
for dataset in ["books", "mangas"]:
print(f"Generate recommendations for {dataset}")
df = recommend.popularity(dataset, n, count_threshold)
df.to_sql(f"{dataset}_popular", **update_params, index_label="id")
df = recommend.item_based(dataset, n)
df.to_sql(f"{dataset}_item_based", **update_params, index=False)
df = recommend.user_based(dataset, users, n)
df.to_sql(f"{dataset}_user_based", **update_params, index=False)
if __name__ == "__main__":
load_dotenv(".streamlit/secrets.toml")
# Selected users for user-based recommendations
users = [
# Manga example users
1002,
357,
2507,
# Book example users
114368,
95359,
104636,
]
new_users = query.list_users_since("2024-08-01")
users += new_users
update_database(users, 40, 50)