-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclustering_methods.py
141 lines (110 loc) · 4.73 KB
/
clustering_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
## Author: Aditya
import sys
import numpy as np
import random
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn import metrics
np.set_printoptions(threshold=sys.maxsize)
Train_Data=np.load('encoded_train_new.npy')
Test_Data=np.load('encoded_test_new.npy')
Train_Labels=np.load('label_train.npy')
Test_Labels=np.load('label_test.npy')
c = ['AK', 'Bee', 'BKL' , 'DF', 'MEL', 'NV', 'sec', 'v Asc 'J
def CLS(n):
if n=='AK':
return 1
elif n=='BCC':
return 2
elif n=='BKL':
return 2
elif n=='DF':
return 3
elif n=='MEL':
return 4
elif n=='NV':
return 5
elif n=='SCC':
return 6
elif n=='VASC':
return 7
Train_Labels_N = np.array(list(map(CLS,Train_Labels)))
print(Train_Labels_N.shape)
print(Train_Data.shape[O])
print(Test_Data.shape)
print(Train_Labels.shape)
print(Test_Labels.shape)
Train_vector=np.reshape(Train_Data,(Train_Data.shape[O],Train_Data.Shape[1]*Train_Data.shape[2]*Train_Data.shape[3]))
Test_vector=np.reshape(Test_Data,(Test_Data.shape[O],Test_Data.Shape[1]*Test_Data.shape[2]*Test_Data.shape[3]))
print(Train_vector.shape)
print(Test_vector.shape)
pea= PCA(n_components=2)
principalComponents = pca.fit_transform(Train_vector)
np.shape(principalComponents)
N_C=[4,5,6,7,8,9]
fig, axs = plt.subplots(1, 3)
for i in range(3):
KM_PCA = KMeans(n_clusters=N_C[i], random_state=O,max_iter=1000).fit(principalComponents)
Predicted_Train_PCA = KM_PCA.labels_.reshape(18998,1)
centroids=KM_PCA.cluster_centers
axs[i].scatter(principalComponents[:,O],principalComponents[:,1],c=Predicted_Train_PCA, cmap=plt.cm.Paired)
axs[i].scatter( centroids[:, OJ, centroids[:, 1], marker="x", s=169,
linewidths=3, color="k", zorder=10)
# square pLot
axs[i].set_aspect('equal', adjustable='box')
fig.set_figwidth(20)
fig.set_figheight(20)
fig, axs = plt.subplots(1, 3)
for i in range(3):
KM_PCA = KMeans(n_clusters=N_C[iJ, random_state=O,max_iter=1OOO).fit(principalComponents)
Predicted_Train_PCA=KM_PCA.labels_.reshape(18998,1)
centroids=KM_PCA.cluster_centers
axs[iJ.scatter(principalComponents[:,OJ,principalComponents[:,1J,c=Train_Labels_N, cmap=plt.cm.Paired)
axs[iJ.scatter( centroids[:, OJ, centroids[:, 1J, marker="x", s=169, linewidths=3, color="k", zorder=1O)
# square plot
axs[iJ.set_aspect('equal', adjustable='box')
fig.set_figwidth(20)
fig.set_figheight(20)
axs[iJ.scatter(principalComponents[:,OJ,principalComponents[:,1J,c=Predicted_Train_PCA, cmap=plt.cm.Paired)
axs[iJ.scatter( centroids[:, OJ, centroids[:, 1J, marker="x", s=169, linewidths=3, color="k", zorder=1O)
# square plot
axs[iJ.set_aspect('equal', adjustable='box')
fig.set_figwidth(20)
fig.set_figheight(20)
fig, axs = plt.subplots(1, 3)
for i in range(3):
KM_PCA = KMeans(n_clusters=N_C[i+3J, random_state=0,max_iter=1OOO).fit(principalComponents)
Predicted_Train_PCA=KM_PCA.labels_.reshape(18998,1)
centroids=KM_PCA.cluster_centers
axs[iJ.scatter(principalComponents[:,OJ,principalComponents[:,1J,c=Train_Labels_N, cmap=plt.cm.Paired)
axs [iJ.scatter(centroids[:, OJ, centroids[:, 1J, marker="x", s=169,linewidths=3, color="k", zorder=1O)
# square plot
axs[iJ .set_aspect('equal', adjustable='box')
fig.set_figwidth(20)
fig.set_figheight(20)
for i in range(5):
KM= KMeans(n_clusters=8, random_state=i,max_iter=1000).fit(Train_vector)
Train_Labels_Predicted=KM.labels_.reshape(18998,)
ARI_O=metrics.adjusted_rand_score(Train_Labels_N,Train_Labels_Predicted)
print(ARI_O)
for i in range(5):
KM= KMeans(n_clusters=7, random_state=i,max_iter=1000).fit(Train_vector)
Train_Labels_Predicted=KM.labels_.reshape(18998,)
ARI_O=metrics.adjusted_rand_score(Train_Labels_N,Train_Labels_Predicted)
print(ARI_O)
for i in range(5):
KM= KMeans(n_clusters=6, random_state=i,max_iter=1000).fit(Train_vector)
Train_Labels_Predicted=KM.labels_.reshape(18998,)
ARI_O=metrics.adjusted_rand_score(Train_Labels_N,Train_Labels_Predicted)
print(ARI_O)
for i in range(5):
KM= KMeans(n_clusters=5, random_state=i,max_iter=1000).fit(Train_vector)
Train_Labels_Predicted=KM.labels_.reshape(18998,)
ARI_0=metrics.adjusted_rand_score(Train_Labels_N,Train_Labels_Predicted)
print(ARI_0)
for i in range(5):
KM= KMeans(n_clusters=9, random_state=i,max_iter=1000).fit(Train_vector)
Train_Labels_Predicted=KM.labels_.reshape(18998,)
ARI_0=metrics.adjusted_rand_score(Train_Labels_N,Train_Labels_Predicted)
print(ARI_0)