-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrDPOtrainer.py
331 lines (278 loc) · 13.3 KB
/
rDPOtrainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
from typing import Dict, List, Union, Tuple, Literal
import torch.distributed
from trl.trainer import DPOTrainer
from trl.trainer.utils import pad_to_length
import torch.nn as nn
class rDPOTrainer(DPOTrainer):
def concatenated_inputs(self, batch: Dict[str, Union[List, torch.LongTensor]]) -> Dict[str, torch.LongTensor]:
concatenated_batch = {}
if self.is_encoder_decoder:
max_length = max(batch["chosen_labels"].shape[1], batch["rejected_labels"].shape[1])
else:
max_length = max(batch["chosen_input_ids"].shape[1], batch["rejected_input_ids"].shape[1])
for k in batch:
if k.startswith("chosen") and isinstance(batch[k], torch.Tensor):
pad_value = self.label_pad_token_id if "labels" in k or self.is_encoder_decoder else self.padding_value
concatenated_key = k.replace("chosen", "concatenated")
concatenated_batch[concatenated_key] = pad_to_length(batch[k], max_length, pad_value=pad_value)
for k in batch:
if k.startswith("rejected") and isinstance(batch[k], torch.Tensor):
pad_value = self.label_pad_token_id if "labels" in k or self.is_encoder_decoder else self.padding_value
concatenated_key = k.replace("rejected", "concatenated")
concatenated_batch[concatenated_key] = torch.cat(
(
concatenated_batch[concatenated_key],
pad_to_length(batch[k], max_length, pad_value=pad_value),
),
dim=0,
).to(self.accelerator.device)
# concatenated_batch["concatenated_images"] = batch["images"] + batch["images"]
if self.is_encoder_decoder:
concatenated_batch["concatenated_input_ids"] = batch["prompt_input_ids"].repeat(2, 1)
concatenated_batch["concatenated_attention_mask"] = batch["prompt_attention_mask"].repeat(2, 1)
return concatenated_batch
def concatenated_forward(
self, model: torch.nn.Module, batch: Dict[str, Union[List, torch.LongTensor]]
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
concatenated_batch = self.concatenated_inputs(batch)
len_chosen = batch["chosen_labels"].shape[0]
chosen_batch = concatenated_batch["concatenated_input_ids"][:len_chosen]
rejected_batch = concatenated_batch["concatenated_input_ids"][len_chosen:]
chosen_mask = concatenated_batch["concatenated_attention_mask"][:len_chosen]
rejected_mask = concatenated_batch["concatenated_attention_mask"][len_chosen:]
chosen_label = concatenated_batch["concatenated_labels"][:len_chosen]
rejected_label = concatenated_batch["concatenated_labels"][len_chosen:]
chosen_model_kwargs = (
{
"labels": chosen_label,
"decoder_input_ids": concatenated_batch.pop("chosen_decoder_input_ids", None),
}
if self.is_encoder_decoder
else {}
)
rejected_model_kwargs = (
{
"labels": rejected_label,
"decoder_input_ids": concatenated_batch.pop("rejected_decoder_input_ids", None),
}
if self.is_encoder_decoder
else {}
)
# model_kwargs = {
# "images": concatenated_batch["concatenated_images"],
# "labels": concatenated_batch["concatenated_labels"],
# }
# outputs, refined_labels = model(
# concatenated_batch["concatenated_input_ids"],
# attention_mask=concatenated_batch["concatenated_attention_mask"],
# **model_kwargs,
# )
# all_logits = outputs.logits.to(torch.float32)
# all_logps = self._get_batch_logps(
# all_logits,
# refined_labels,
# average_log_prob=False,
# )
# chosen_logps = all_logps[:len_chosen]
# rejected_logps = all_logps[len_chosen:]
# chosen_logits = all_logits[:len_chosen]
# rejected_logits = all_logits[len_chosen:]
# imageless_model_kwargs = {
# "labels": batch["chosen_labels"],
# "images": batch["image"],
# "mask_visual_tokens": True,
# }
# imageless_chosen_outputs, imageless_chosen_label = model(
# batch["chosen_input_ids"],
# attention_mask=batch["chosen_attention_mask"],
# **imageless_model_kwargs,
# )
chosen_logits = model(
input_ids = chosen_batch,
labels = chosen_label,
images=batch['images'],
attention_mask=chosen_mask,
**chosen_model_kwargs,
).logits.to(torch.float32)
_, _, _, _, _, new_chosen_labels = self.model.prepare_inputs_labels_for_multimodal(
input_ids = chosen_batch,
position_ids = None,
attention_mask = chosen_mask,
past_key_values = None,
labels = chosen_label,
images = batch['images']
)
chosen_logps = self._get_batch_logps(
chosen_logits,
new_chosen_labels,
average_log_prob=False,
)
rejected_logits = model(
input_ids = rejected_batch,
labels = rejected_label,
images=batch['images'],
attention_mask=rejected_mask,
**rejected_model_kwargs,
).logits.to(torch.float32)
_, _, _, _, _, new_rejected_labels = self.model.prepare_inputs_labels_for_multimodal(
input_ids = rejected_batch,
position_ids = None,
attention_mask = rejected_mask,
past_key_values = None,
labels = rejected_label,
images = batch['images']
)
rejected_logps = self._get_noisy_batch_logps(
rejected_logits,
rejected_logits,
new_rejected_labels,
average_log_prob=False,
)
# imageless_model_kwargs = {
# "labels": batch["chosen_labels"],
# "images": batch["retrieved_images"],
# }
# imageless_chosen_outputs, imageless_chosen_label = model(
# batch["chosen_input_ids"],
# attention_mask=batch["chosen_attention_mask"],
# **imageless_model_kwargs,
# )
# imageless_chosen_logits = imageless_chosen_outputs.logits.to(torch.float32)
# imageless_chosen_logps = self._get_batch_logps(
# imageless_chosen_logits,
# imageless_chosen_label,
# average_log_prob=False,
# )
imageless_chosen_logits = model(
input_ids = chosen_batch,
labels = chosen_label,
images=batch['retrieved_images'],
attention_mask=chosen_mask,
**chosen_model_kwargs,
).logits.to(torch.float32)
_, _, _, _, _, new_imageless_chosen_labels = self.model.prepare_inputs_labels_for_multimodal(
input_ids = chosen_batch,
position_ids = None,
attention_mask = chosen_mask,
past_key_values = None,
labels = chosen_label,
images = batch['retrieved_images']
)
imageless_chosen_logps = self._get_noisy_batch_logps(
imageless_chosen_logits,
imageless_chosen_logits,
new_imageless_chosen_labels,
average_log_prob=False,
)
return (chosen_logps, rejected_logps, imageless_chosen_logps, chosen_logits, rejected_logits, imageless_chosen_logits)
def dpo_loss(
self,
policy_chosen_logps: torch.FloatTensor,
policy_rejected_logps: torch.FloatTensor,
policy_imageless_chosen_logps: torch.FloatTensor,
reference_chosen_logps: torch.FloatTensor,
reference_rejected_logps: torch.FloatTensor,
reference_imageless_chosen_logps: torch.FloatTensor,
reference_free: bool = False,
):
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps
if reference_free:
ref_logratios = 0
logits = pi_logratios - ref_logratios # response preference
image_conditional_pi_logratios = policy_chosen_logps - policy_imageless_chosen_logps
image_conditional_ref_logratios = reference_chosen_logps - reference_imageless_chosen_logps
if reference_free:
image_conditional_ref_logratios = 0
image_conditional_logits = image_conditional_pi_logratios - image_conditional_ref_logratios # image-conditional preference
# anchor_logits = policy_chosen_logps - reference_chosen_logps # anchored preference
# mDPO
losses = -torch.nn.functional.logsigmoid(self.beta * logits) \
-torch.nn.functional.logsigmoid(self.beta * image_conditional_logits)
# \
# -torch.nn.functional.logsigmoid(self.beta * anchor_logits)
# losses -= policy_chosen_logps / 1024
# KL penalty
kl = torch.exp(reference_chosen_logps) * (reference_chosen_logps - policy_chosen_logps)
# losses += 0.05*kl
chosen_rewards = (
self.beta * (policy_chosen_logps - reference_chosen_logps).detach()
)
rejected_rewards = (
self.beta * (policy_rejected_logps - reference_rejected_logps).detach()
)
imageless_rewards = (
self.beta * (policy_imageless_chosen_logps - reference_imageless_chosen_logps).detach()
)
return losses, chosen_rewards, rejected_rewards, imageless_rewards, kl
def get_batch_metrics(
self,
model,
batch: Dict[str, Union[List, torch.LongTensor]],
train_eval: Literal["train", "eval"] = "train",
):
metrics = {}
(
policy_chosen_logps,
policy_rejected_logps,
policy_imageless_chosen_logps,
policy_chosen_logits,
policy_rejected_logits,
policy_imageless_chosen_logits,
) = self.concatenated_forward(model, batch)
with torch.no_grad():
if self.ref_model is None:
with self.accelerator.unwrap_model(self.model).disable_adapter():
(
reference_chosen_logps,
reference_rejected_logps,
reference_imageless_chosen_logps,
_,
_,
_,
) = self.concatenated_forward(self.model, batch)
else:
(
reference_chosen_logps,
reference_rejected_logps,
reference_imageless_chosen_logps,
_,
_,
_,
) = self.concatenated_forward(self.ref_model, batch)
losses, chosen_rewards, rejected_rewards, imageless_rewards, kl = self.dpo_loss(
policy_chosen_logps,
policy_rejected_logps,
policy_imageless_chosen_logps,
reference_chosen_logps,
reference_rejected_logps,
reference_imageless_chosen_logps,
)
reward_accuracies = (chosen_rewards > rejected_rewards).float()
imageless_reward_accuracies = (chosen_rewards > imageless_rewards).float()
loss = losses.mean()
chosen_labels = batch["chosen_labels"]
prefix = "eval_" if train_eval == "eval" else ""
if self.sft_weight > 0.0:
if not self.is_encoder_decoder:
policy_chosen_logits = policy_chosen_logits[..., :-1, :].contiguous()
chosen_labels = chosen_labels[..., 1:].clone()
loss_func = nn.CrossEntropyLoss()
sft_loss = loss_func(policy_chosen_logits.view(-1, policy_chosen_logits.shape[-1]), chosen_labels.view(-1))
loss = self.sft_weight * sft_loss + loss
metrics[f"{prefix}sft_loss"] = sft_loss.detach().cpu()
metrics[f"{prefix}rewards/chosen"] = chosen_rewards.cpu().mean()
metrics[f"{prefix}rewards/rejected"] = rejected_rewards.cpu().mean()
metrics[f"{prefix}rewards/imageless_chosen"] = imageless_rewards.cpu().mean()
metrics[f"{prefix}rewards/accuracies"] = reward_accuracies.cpu().mean()
metrics[f"{prefix}rewards/imageless_accuracies"] = imageless_reward_accuracies.cpu().mean()
metrics[f"{prefix}rewards/margins"] = (chosen_rewards - rejected_rewards).cpu().mean()
metrics[f"{prefix}rewards/imageless_margins"] = (chosen_rewards - imageless_rewards).cpu().mean()
metrics[f"{prefix}logps/rejected"] = policy_rejected_logps.detach().cpu().mean()
metrics[f"{prefix}logps/chosen"] = policy_chosen_logps.detach().cpu().mean()
metrics[f"{prefix}logps/imageless_chosen"] = policy_imageless_chosen_logps.detach().cpu().mean()
metrics[f"{prefix}logits/rejected"] = policy_rejected_logits.detach().cpu().mean()
metrics[f"{prefix}logits/chosen"] = policy_chosen_logits.detach().cpu().mean()
metrics[f"{prefix}logits/imageless_chosen"] = policy_imageless_chosen_logits.detach().cpu().mean()
metrics[f"{prefix}kl div"] = kl.cpu().mean()
return loss, metrics