-
Notifications
You must be signed in to change notification settings - Fork 0
/
webapp.py
83 lines (69 loc) · 2.31 KB
/
webapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# For potato leaf disease prediction
import streamlit as st
from PIL import Image
import numpy as np
import tensorflow.keras as keras
import matplotlib.pyplot as plt
import tensorflow_hub as hub
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html = True)
st.title('LeafCheck: A Potato Leaf Disease Detector')
def main() :
file_uploaded = st.file_uploader('Choose an image...', type = 'jpg')
if file_uploaded is not None :
image = Image.open(file_uploaded)
st.write("Uploaded Image.")
figure = plt.figure()
plt.imshow(image)
plt.axis('off')
st.pyplot(figure)
result, confidence = predict_class(image)
st.write('Prediction : {}'.format(result))
st.write('Confidence : {}%'.format(confidence))
def predict_class(image) :
with st.spinner('Loading Model...'):
classifier_model = keras.models.load_model(r'final_model.h5', compile = False)
shape = ((256,256,3))
model = keras.Sequential([hub.KerasLayer(classifier_model, input_shape = shape)]) # ye bhi kaam kar raha he
test_image = image.resize((256, 256))
test_image = keras.preprocessing.image.img_to_array(test_image)
test_image /= 255.0
test_image = np.expand_dims(test_image, axis = 0)
class_name = ['Potato__Early_blight', 'Potato__Late_blight', 'Potato__healthy']
prediction = model.predict(test_image)
confidence = round(100 * (np.max(prediction[0])), 2)
final_pred = class_name[np.argmax(prediction)]
return final_pred, confidence
footer = """<style>
a:link , a:visited{
color: black;
background-color: transparent;
text-decoration: None;
}
a:hover, a:active {
color: brown;
background-color: transparent;
text-decoration: None;
}
.footer {
position: fixed;
left: 0;
bottom: 0;
width: 100%;
background-color: transparent;
color: black;
text-align: center;
}
</style>
<div class="footer">
<p align="center"> <a>Developed to help farmers</a></p>
</div>
"""
st.markdown(footer, unsafe_allow_html = True)
if __name__ == '__main__' :
main()