-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathaccuracy.py
58 lines (43 loc) · 1.43 KB
/
accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
from classifier.forest import RandomForest
number_of_trees = 24
size = 'medium'
data_features_file = 'data/features.txt'
#data_testing_file = 'data/testing/%s.txt' % size
data_testing_file = 'data/testing/twitter.txt'
forest_file = 'data/classifiers/%i_trees_%s_training.txt' %(number_of_trees, size)
def get_reviews():
features = get_features()
reviews = []
f = open(data_testing_file, 'r+')
for line in f:
reviews.append(dict(zip(features, np.float64(line.split(',')))))
f.close()
return reviews
def get_features():
features = []
f = open(data_features_file, 'r+')
for line in f:
features.append(line.strip())
f.close()
return features
if __name__ == '__main__':
forest = RandomForest.load(forest_file)
total_diff = 0
errors = 0
reviews = get_reviews()
off_by = [0]*5
for review in reviews:
answer = forest.classify(review)
if answer != review['star']:
diff = abs(answer-float(review['star']))
off_by[int(diff)] += 1
#print "Answer: %f, Star: %f, Diff: %f" %(answer, float(review['star']), diff)
errors += 1
total_diff += diff
print "%i error(s) / %i reviews. %f %% accuracy" % (errors, len(reviews), 100*float(len(reviews)-errors)/len(reviews))
print "Average error %f" % (total_diff/errors)
print "Average difference %f" % (total_diff/len(reviews))
print "Differences"
for i in range(1,5):
print "%i difference - Count: %i, %f %% of errors" % (i, off_by[i], 100*off_by[i]/errors)