forked from 790hanu/Annex-qr-code-simulator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CatalanNumber.java
58 lines (49 loc) · 1.8 KB
/
CatalanNumber.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
package com.thealgorithms.dynamicprogramming;
/**
* This file contains an implementation of finding the nth CATALAN NUMBER using
* dynamic programming Wikipedia: https://en.wikipedia.org/wiki/Catalan_number
*
* Time Complexity: O(n^2) Space Complexity: O(n)
*
* @author AMRITESH ANAND (https://github.com/amritesh19)
*/
import java.util.Scanner;
public class CatalanNumber {
/**
* This method finds the nth Catalan number
*
* @param n input n which determines the nth Catalan number n should be less
* than equal to 50 as 50th Catalan number is 6,533,841,209,031,609,592 for
* n > 50, BigInteger class should be used instead long
*
* @return catalanArray[n] the nth Catalan number
*/
static long findNthCatalan(int n) {
// Array to store the results of subproblems i.e Catalan numbers from [1...n-1]
long catalanArray[] = new long[n + 1];
// Initialising C₀ = 1 and C₁ = 1
catalanArray[0] = 1;
catalanArray[1] = 1;
/**
* The Catalan numbers satisfy the recurrence relation C₀=1 and Cn = Σ
* (Ci * Cn-1-i), i = 0 to n-1 , n > 0
*/
for (int i = 2; i <= n; i++) {
catalanArray[i] = 0;
for (int j = 0; j < i; j++) {
catalanArray[i] += catalanArray[j] * catalanArray[i - j - 1];
}
}
return catalanArray[n];
}
// Main method
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println(
"Enter the number n to find nth Catalan number (n <= 50)"
);
int n = sc.nextInt();
System.out.println(n + "th Catalan number is " + findNthCatalan(n));
sc.close();
}
}