forked from MasterScrat/Chatistics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
89 lines (81 loc) · 4.57 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
import logging
from parsers.config import config
import pandas as pd
import argparse
log = logging.getLogger(__name__)
class ArgParseDefault(argparse.ArgumentParser):
"""Simple wrapper which shows defaults in help"""
def __init__(self, **kwargs):
super().__init__(**kwargs, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
def add_load_data_args(parser):
"""Adds common data loader arguments to arg parser"""
platforms = ['telegram', 'whatsapp', 'messenger', 'hangouts']
parser.add_argument('-p', '--platforms', default=platforms, choices=platforms, nargs='+', help='Use data only from certain platforms')
parser.add_argument('--filter-conversation', dest='filter_conversation', nargs='+', default=[], help='Limit by conversations with this person/group')
parser.add_argument('--filter-sender', dest='filter_sender', nargs='+', default=[], help='Limit by messages by this sender')
parser.add_argument('--remove-conversation', dest='remove_conversation', nargs='+', default=[], help='Remove messages by these senders/groups')
parser.add_argument('--remove-sender', dest='remove_sender', nargs='+', default=[], help='Remove all messages by this sender')
parser.add_argument('--outgoing-only', dest='outgoing_only', action='store_true', help='Limit by outgoing messages')
parser.add_argument('--incoming-only', dest='incoming_only', action='store_true', help='Limit by incoming messages')
parser.add_argument('--lang', nargs='+', default=[], help='Limit by detected languages')
parser.add_argument('--contains-keyword', dest='contains_keyword', nargs='+', default=[],
help='Limit by messages which contain certain keywords (multiple keywords are used with OR logic)')
return parser
def load_data(args):
"""Load chat log data based on arg parse filter options"""
# input paths
if len(args.platforms) == 0:
log.info('No platforms specified')
exit(0)
df = []
for platform in args.platforms:
data_path = os.path.join('data', config[platform]['OUTPUT_PICKLE_NAME'])
if not os.path.isfile(data_path):
log.info(f'Could not find any data for platform {platform}')
continue
log.info(f'Reading data for platform {platform}')
_df = pd.read_pickle(data_path)
df.append(_df)
df = pd.concat(df, axis=0, ignore_index=True)
original_len = len(df)
# filtering
if len(args.filter_conversation) > 0:
log.info('Filtering by conversation(s) with {}'.format(', '.join(args.filter_conversation)))
df = df[df['conversationWithName'].isin(args.filter_conversation)]
if len(args.filter_sender) > 0:
log.info('Filtering messages by sender(s) {}'.format(', '.join(args.filter_sender)))
df = df[df['senderName'].isin(args.filter_sender)]
if len(args.remove_conversation) > 0:
log.info('Removing conversations with {}'.format(', '.join(args.remove_conversation)))
df = df[~df['conversationWithName'].isin(args.remove_conversation)]
if len(args.remove_sender) > 0:
log.info('Removing messages by {}'.format(', '.join(args.remove_sender)))
df = df[~df['senderName'].isin(args.remove_sender)]
if args.incoming_only:
log.info('Filtering by incoming only')
df = df[~df['outgoing']]
if args.outgoing_only:
log.info('Filtering by outgoing only')
df = df[df['outgoing']]
if len(args.lang) > 0:
log.info('Filtering by languages {}'.format(', '.join(args.lang)))
df = df[df['language'].isin(args.lang)]
if len(args.contains_keyword) > 0:
log.info('Filtering by messages which contain the keyword(s) {}'.format(', '.join(args.contains_keyword)))
df = df.dropna(subset=['text'])
df = df[df['text'].str.contains('|'.join(args.contains_keyword))]
if 'top_n' in args:
# find top_n interlocutors
top_interlocutors = df.conversationWithName.value_counts()
if len(top_interlocutors) <= args.top_n:
log.info(f'Tried to filter by top {args.top_n:,} but only {len(top_interlocutors):,} conversations present in data')
else:
log.info(f'Filtering top {args.top_n:,} conversations from a total of {len(top_interlocutors):,} conversations')
df = df[df['conversationWithName'].isin(top_interlocutors.iloc[:args.top_n].index)]
if len(df) > 0:
log.info(f'Loaded a total of {len(df):,} messages ({original_len - len(df):,} removed by filters)')
else:
log.warning(f'With the given filters no messages could be found!')
exit(-1)
return df