-
Notifications
You must be signed in to change notification settings - Fork 1
/
JVM-start.agda
256 lines (185 loc) · 5.91 KB
/
JVM-start.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
-- Programming Language Technology DAT151/DIT231
-- 2024-12-17 Agda (version ≥2.6.0)
-- From Dependent Types to Verified Compilation
-- A correct compiler for Hutton's Razor to a stack machine
-- Similar to an early pen-and-paper proof (register machine):
--
-- John McCarthy and James Painter, 1967
-- Correctness of a Compiler for Arithmetic Expressions
-- http://jmc.stanford.edu/articles/mcpain/mcpain.pdf
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
-- Data types and pattern matching
---------------------------------------------------------------------------
-- Example of a data type.
data List (A : Set) : Set where
[] : List A
_∷_ : (x : A) (xs : List A) → List A
-- Natural numbers in unary notation.
data Nat : Set where
zero : Nat
suc : (n : Nat) → Nat
{-# BUILTIN NATURAL Nat #-}
-- NATURAL gives us decimal notation for Nat.
five = suc 4
infixl 10 _+_
infixr 6 _∷_
-- Addition.
_+_ : (n m : Nat) → Nat
n + m = {!!}
{-
plus-0 : ∀(n : Nat) → n + 0 ≡ n
plus-0 n = {!!}
-- Indexed types: Fin, Vec
---------------------------------------------------------------------------
{-
-- Bounded numbers: Fin n = { m | n < m }.
data Fin : Nat → Set where
zero : {n : Nat} → Fin (suc n)
suc : {n : Nat} (i : Fin n) → Fin (suc n)
{-
-- Example with hidden arguments.
three : Fin 5
three = ?
{-
-- Vectors (length-indexed lists).
-- Vec : Set → Nat → Set
data Vec (A : Set) : Nat → Set where
[] : Vec A zero
_∷_ : {n : Nat} (x : A) (xs : Vec A n) → Vec A (suc n)
-- Reading an element of a vector.
lookup : ∀{n A} (i : Fin n) (xs : Vec A n) → A
lookup i xs = {!!}
{-
-- Automatic quantification over hidden arguments.
variable
n : Nat
A : Set
{-
-- Expressions and interpretation: "Hutton's razor"
---------------------------------------------------------------------------
-- We have a single type of (natural) numbers.
Num = Nat
-- Expressions over n variables.
-- A variable is denoted by its number x < n.
data Exp (n : Nat) : Set where
var : (x : Fin n) → Exp n
num : (w : Num) → Exp n
plus : (e e' : Exp n) → Exp n
-- An environment maps each variable to its value.
Value = Num
Env = Vec Num
{-
-- Interpretation of expressions.
eval : (e : Exp n) (γ : Env n) → Value
eval e γ = ?
{-
-- A fragment of JVM
---------------------------------------------------------------------------
StackSize = Nat -- Current stack size
StoreSize = Nat -- Local variable store limit
Addr = Fin -- Local variable address
Word = Nat -- Word (should be 32bit signed int, but we use Nat here)
-- JVM instructions.
--
-- n = number of local variables
-- m = stack size before instruction
-- m' = stack size after instruction
variable
k l m m' : StackSize
data Ins (n : StoreSize) : (m m' : StackSize) → Set where
load : (a : Addr n) → Ins n m (1 + m) -- Load variable onto stack.
add : Ins n (2 + m) (1 + m) -- Add top stack elements.
ldc : (w : Word) → Ins n m (1 + m) -- Load constant onto stack.
pop : Ins n (1 + m) m -- Remove top stack element.
-- Instruction sequences.
-- Note that for instruction concatenation, the index "l" has to match.
data Inss (n : StoreSize) (m : StackSize) : (m' : StackSize) → Set where
[] : Inss n m m
ins : Ins n m l → Inss n m l
_∙_ : (i : Inss n m l) (is : Inss n l k) → Inss n m k
infixr 10 _∙_
{-
-- Compilation of expressions
---------------------------------------------------------------------------
-- The code for an expression leaves one additional value on the stack.
compile : (e : Exp n) → Inss n m (suc m)
compile (var x) = ?
compile (num w) = ?
compile (plus e e') = ?
{-
-- JVM small-step semantics
---------------------------------------------------------------------------
-- JVM machine state (simplified).
Store = Env
Stack = Vec Word
record State (n : StoreSize) (m : StackSize) : Set where
constructor state
field
V : Store n
S : Stack m
open State
{-
-- Executing a JVM instruction.
step : (i : Ins n m m') (s : State n m) → State n m'
step i s = {!!}
{-
-- Compiler correctness
---------------------------------------------------------------------------
-- Executing a series of JVM instructions.
steps : (is : Inss n m m') (s : State n m) → State n m'
steps (ins i) s = {!!}
steps [] s = {!!}
steps (is ∙ is') s = {!!}
{-
-- Pushing a word onto the stack.
push : Word → State n m → State n (suc m)
push w (state V S) = state V (w ∷ S)
push-eval : (e : Exp n) (s : State n m) → State n (suc m)
push-eval e (state V S) = state V (eval e V ∷ S)
-- Compiler correctness theorem.
-- Running the instructions for an expression e
-- leaves the value of e on top of the stack.
sound : (e : Exp n) (s : State n m) →
steps (compile e) s ≡ push-eval e s
-- Case: variables
sound (var x) s = {!!}
-- Case: number literals.
sound (num w) s = {!!}
-- Case: addition expression.
sound (plus e e') s = begin
steps (compile (plus e e')) s ≡⟨ {!!} ⟩
push-eval (plus e e') s
∎
where s' = push-eval e s
-- steps (compile (plus e e') s)
-- = steps (compile e ∙ compile e' ∙ ins add) s
-- = steps (compile e' ∙ ins add) (steps (compile e) s) -- by ind.hyp.
-- = steps (compile e' ∙ ins add) (push-eval e s)
-- = steps (ins add) (steps (compile e') (push-eval e s))
-- = steps (ins add) (push-eval e' (push-eval e s))
-- = step add (push-eval e' (push-eval e s))
-- = step add (push-eval e' (push-eval e (state V S))) -- s =: state V S
-- = step add (push-eval e' (state V (eval e V ∷ S)))
-- = step add (state V (eval e' V ∷ eval e V ∷ S))
-- = state V ((eval e V + eval e' V) ∷ S)
-- = state V (eval (plus e e') V ∷ S)
-- = push-eval (plus e e') (state V S)
-- = push-eval (plus e e') s
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}