-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathpreprocess.py
225 lines (188 loc) · 9.44 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import warnings
warnings.filterwarnings('ignore',category=FutureWarning)
import itertools
from jsonpickle import loads
import multiprocessing as mp
import pickle
from argparse import ArgumentParser
from collections import defaultdict
from scipy import stats
import tensorflow as tf
from datagen import kind_utils
MAX_CONTEXTS = 0
MAX_INTERNAL_PATHS = 0
MAX_PATH_LENGTH = 0
MAX_RELATIVE_PATH_LENGTH = 0
MAX_EXAMPLES_IN_SHARD = 500000
UNK_NORMAL_PROC = 'UnknownNormalProc'
UNK_INDIRECT_PROC = 'UnknownIndirectProc'
def save_dictionaries(dataset_name, target_to_count, api_to_count, arg_to_count, num_training_examples):
save_dict_file_path = '{}.dict'.format(dataset_name)
with open(save_dict_file_path, 'wb') as file:
pickle.dump(target_to_count, file)
pickle.dump(api_to_count, file)
pickle.dump(arg_to_count, file)
pickle.dump(num_training_examples, file)
print('Dictionaries saved to: {}'.format(save_dict_file_path))
def make_example_from_line(line):
obj = loads(line)
return make_example(obj)
def make_example_and_histograms(line):
local_target_to_count = defaultdict(int)
local_api_to_count = defaultdict(int)
local_arg_to_count = defaultdict(int)
obj = loads(line)
api_counter = 0
targets = [t for t in obj['func_name'].split('_') if len(t) > 0]
for subtok in targets:
local_target_to_count[subtok] += 1
nodes = obj['GNN_data']['nodes'].items()
for node in nodes:
for s in loads(node[1]):
for call in s:
api = call[0]
api_counter += 1
if api.startswith('N'):
local_api_to_count[UNK_NORMAL_PROC] += 1
elif api.startswith('I'):
local_api_to_count[UNK_INDIRECT_PROC] += 1
else:
for subtok in api[1:].split('_'):
local_api_to_count[subtok] += 1
args = call[1:]
for arg in args:
val = kind_utils.get_kind_value(arg)
for v in val:
local_arg_to_count[v] += 1
ex = make_example(obj)
return ex, local_target_to_count, local_api_to_count, local_arg_to_count, api_counter
def make_example(obj):
ex = tf.train.SequenceExample()
ex.context.feature['package'].bytes_list.value.append(obj['package'].encode())
ex.context.feature['exe_name'].bytes_list.value.append(obj['exe_name'].encode())
targets = ex.feature_lists.feature_list['targets']
node_strings = ex.feature_lists.feature_list['node_strings']
arg_strings = ex.feature_lists.feature_list['arg_strings']
edges = ex.feature_lists.feature_list['edges']
for target in obj['func_name'].split('_'):
if len(target) > 0:
targets.feature.add().bytes_list.value.append(target.encode())
next_node_id = 0
node_str_to_in_ids = defaultdict(list)
node_str_to_out_ids = defaultdict(list)
obj_nodes = list(obj['GNN_data']['nodes'].items())
internal_edges_to_add = []
for node in obj_nodes:
node_name = node[0]
node_seqs = loads(node[1])
if len(node_seqs) == 0:
# if it's an empty block
node_str_to_in_ids[node_name].append(next_node_id)
node_str_to_out_ids[node_name].append(next_node_id)
node_strings.feature.add().bytes_list.value.extend([])
arg_strings.feature.add().bytes_list.value.extend([])
next_node_id += 1
else:
# there are calls in this block
for i, s in enumerate(node_seqs):
callseq = s
node_str_to_in_ids[node_name].append(next_node_id)
prev_call_id = -1
assert len(callseq) > 0
for call in callseq:
api = call[0]
if api.startswith('N'):
node_strings.feature.add().bytes_list.value.extend([UNK_NORMAL_PROC.encode()])
elif api.startswith('I'):
node_strings.feature.add().bytes_list.value.extend([UNK_INDIRECT_PROC.encode()])
else:
node_strings.feature.add().bytes_list.value.extend(
subtok.encode() for subtok in api[1:].split('_'))
args = call[1:]
arg_vals = [kind_utils.get_kind_value(arg) for arg in args]
flat_vals = itertools.chain.from_iterable(arg_vals)
arg_strings.feature.add().bytes_list.value.extend(v.encode() for v in flat_vals)
if prev_call_id > -1:
# this is not the first call in the sequence
internal_edges_to_add.append((next_node_id - 1, next_node_id))
prev_call_id = next_node_id
next_node_id += 1
node_str_to_out_ids[node_name].append(next_node_id - 1)
obj_edges = obj['GNN_data']['edges']
for source, target in obj_edges:
for source_id in node_str_to_out_ids[source]:
for target_id in node_str_to_in_ids[target]:
edges.feature.add().int64_list.value.extend([source_id, target_id])
for source_id, target_id in internal_edges_to_add:
edges.feature.add().int64_list.value.extend([source_id, target_id])
ex.context.feature['num_nodes'].int64_list.value.append(next_node_id)
return ex.SerializeToString()
def process_file(file_path, data_file_role, dataset_name, collect_histograms=False):
# Currently we take max contexts both from this script and from the json.
# When moving to joint paths, we should pad here and take max_contexts from the arguments and not the json
total_nodes = 0
max_nodes = 0
total_examples = 0
target_to_count = defaultdict(int)
api_to_count = defaultdict(int)
arg_to_count = defaultdict(int)
num_nodes_list = []
with open(file_path, 'r') as file:
writer = create_writer(data_file_role, dataset_name)
if collect_histograms:
with mp.Pool() as pool:
examples_with_histograms = pool.imap_unordered(make_example_and_histograms, file, chunksize=100)
for i, (ex, local_target_to_count, local_api_to_count, local_arg_to_count, local_num_nodes) \
in enumerate(examples_with_histograms):
for key, val in local_target_to_count.items():
target_to_count[key] += val
for key, val in local_api_to_count.items():
api_to_count[key] += val
for key, val in local_arg_to_count.items():
arg_to_count[key] += val
total_examples += 1
total_nodes += local_num_nodes
max_nodes = max(local_num_nodes, max_nodes)
num_nodes_list.append(local_num_nodes)
writer.write(ex)
else:
with mp.Pool() as pool:
serialized_examples = pool.imap_unordered(make_example_from_line, file, chunksize=100)
for i, ex in enumerate(serialized_examples):
writer.write(ex)
writer.close()
print('File: ' + file_path)
if collect_histograms:
print('Average nodes: ' + str(float(total_nodes) / total_examples))
print('Standard error: ' + str(float(stats.sem(num_nodes_list))))
print('Max nodes: ' + str(float(max_nodes)))
print('Total examples: ' + str(total_examples))
return total_examples, target_to_count, api_to_count, arg_to_count
def create_writer(data_file_role, dataset_name):
output_path = '{}.{}'.format(dataset_name, data_file_role)
writer = tf.io.TFRecordWriter(output_path, options=tf.io.TFRecordCompressionType.GZIP)
return writer
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("-trd", "--train_data", dest="train_data_path",
help="path to training data file", required=True)
parser.add_argument("-ted", "--test_data", dest="test_data_path",
help="path to test data file", required=True)
parser.add_argument("-vd", "--val_data", dest="val_data_path",
help="path to validation data file", required=True)
parser.add_argument("-o", "--output_name", dest="output_name",
help="output name - the base name for the created dataset", metavar="FILE", required=True,
default='data')
args = parser.parse_args()
train_data_path = args.train_data_path
test_data_path = args.test_data_path
val_data_path = args.val_data_path
num_examples, target_to_count, api_to_count, arg_to_count = process_file(file_path=train_data_path,
data_file_role='train',
dataset_name=args.output_name,
collect_histograms=True)
for data_file_path, data_role in zip([train_data_path, test_data_path, val_data_path], ['train', 'test', 'val']):
process_file(file_path=data_file_path, data_file_role=data_role, dataset_name=args.output_name,
collect_histograms=False)
save_dictionaries(dataset_name=args.output_name, target_to_count=target_to_count,
api_to_count=api_to_count, arg_to_count=arg_to_count, num_training_examples=num_examples)