-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
112 lines (98 loc) · 3.53 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# File: model.py
# U-Net Model Implementation
# Ziping Chen
import torch
import torch.nn as nn
import torch.nn.functional as F
def double_conv(in_c, out_c):
return nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=3),
nn.BatchNorm2d(out_c),
nn.ReLU(inplace=True),
nn.Conv2d(out_c, out_c, kernel_size=3),
nn.BatchNorm2d(out_c),
nn.ReLU(inplace=True),
)
def upconv(in_c, out_c):
return nn.ConvTranspose2d(
in_channels=in_c,
out_channels=out_c,
kernel_size=2,
stride=2
)
def crop(in_tensor, out_tensor):
diff_h = (in_tensor.size()[2] - out_tensor.size()[2])
left_h = diff_h // 2
diff_w = (in_tensor.size()[3] - out_tensor.size()[3])
left_w = diff_w // 2
return in_tensor[:, :, left_h:-(diff_h-left_h), left_w:-(diff_w-left_w)]
def pad(in_tensor, out_tensor):
diff_h = (in_tensor.size()[2] - out_tensor.size()[2])
left_h = diff_h // 2
diff_w = (in_tensor.size()[3] - out_tensor.size()[3])
left_w = diff_w // 2
return F.pad(out_tensor, [left_w, diff_w - left_w,
left_h, diff_h - left_h])
class UNet(nn.Module):
def __init__(self, in_channels=1, num_classes=2):
super(UNet, self).__init__()
self.in_channels = in_channels
self.num_classes = num_classes
self.contracting_path()
self.expansive_path()
def contracting_path(self):
self.max_pooling = nn.MaxPool2d(kernel_size=2, stride=2)
self.down_conv_1 = double_conv(self.in_channels, 64)
self.down_conv_2 = double_conv(64, 128)
self.down_conv_3 = double_conv(128, 256)
self.down_conv_4 = double_conv(256, 512)
self.down_conv_5 = double_conv(512, 1024)
def expansive_path(self):
self.up_conv_1 = upconv(1024, 512)
self.up_conv_2 = upconv(512, 256)
self.up_conv_3 = upconv(256, 128)
self.up_conv_4 = upconv(128, 64)
self.down_conv_6 = double_conv(1024, 512)
self.down_conv_7 = double_conv(512, 256)
self.down_conv_8 = double_conv(256, 128)
self.down_conv_9 = double_conv(128, 64)
self.conv_1x1 = nn.Conv2d(in_channels=64, out_channels=self.num_classes, kernel_size=1)
def forward(self, image):
input_shape = image.shape[2:]
# encoder
x1 = self.down_conv_1(image)
x2 = self.max_pooling(x1)
x3 = self.down_conv_2(x2)
x4 = self.max_pooling(x3)
x5 = self.down_conv_3(x4)
x6 = self.max_pooling(x5)
x7 = self.down_conv_4(x6)
x8 = self.max_pooling(x7)
x9 = self.down_conv_5(x8)
# decoder
x = self.up_conv_1(x9)
x = torch.cat([x7, pad(x7, x)], 1)
x = self.down_conv_6(x)
x = self.up_conv_2(x)
x = torch.cat([x5, pad(x5, x)], 1)
x = self.down_conv_7(x)
x = self.up_conv_3(x)
x = torch.cat([x3, pad(x3, x)], 1)
x = self.down_conv_8(x)
x = self.up_conv_4(x)
x = torch.cat([x1, pad(x1, x)], 1)
x = self.down_conv_9(x)
x = self.conv_1x1(x)
x = F.interpolate(x, size=input_shape, mode="bilinear", align_corners=False)
return x
if __name__ == '__main__':
# from torchviz import make_dot, make_dot_from_trace
# # test
# fake_input = torch.rand((1, 3, 572, 572))
# model = UNet(3, 1)
# # output = model(fake_input)
# # print(output.shape)
# dot = make_dot(model(fake_input), params=dict(model.named_parameters()))
# dot.format = 'png'
# dot.render("old")
pass