-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlikelihood.py
255 lines (232 loc) · 9.53 KB
/
likelihood.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from __future__ import division, print_function
# Code relating to the multivariate normal is only present
# in later version of SciPy
import pkg_resources
pkg_resources.require("scipy>=0.14")
import numpy as np
from math import log, pi, exp, isnan, sqrt
import scipy.optimize
import scipy.misc
import scipy.stats
import scipy.integrate
import warnings
import logging
import psutil
import itertools
import collections
import os
# This must be built prior to running this script.
import pyexp
def logfac(x):
return scipy.special.gammaln(x + 1)
def inv_qf(M, x):
# if __debug__: print("inv_qf")
# Inverse quadratic form: x^T(M^-1)x
# More stable than computing M^-1
v, W = np.linalg.eigh(M)
s = sum(np.dot(W[:, i].T, x).item()**2 / v[i] for i in range(len(x)) if v[i] > 0)
return s
def latent_mvnorm_ll_nquad(x, mu, sigma, sampling):
K = len(x)
counts = x * sampling
mvn = scipy.stats.multivariate_normal(mu, sigma)
a0 = logfac(sampling) - logfac(counts) - logfac(sampling - counts)
def f(*args):
Z = np.array(args)
return exp((a0 + counts * np.log(Z) + (sampling - counts) * np.log(1. - Z)).sum() + mvn.logpdf(Z))
ret = scipy.integrate.nquad(f, ((0.0, 1.0),) * K)
print(ret)
return ret[0]
def latent_mvnorm_ll_laplace(x, mu, sigma, sampling):
K = len(x)
sgn, logdetsigma = np.linalg.slogdet(sigma)
if sgn != 1.0:
evs = sorted(np.linalg.eigvals(sigma))
cn = abs(evs[-1] / evs[0])
warnings.warn("Sigma is not PSD; condition number: %g" % cn)
# Importance sampler
counts = x * sampling
logfac = lambda x: scipy.special.gammaln(x + 1)
# expo += mvn.logpdf(Z)
# expo -= prop.logpdf(Z)
# ret = scipy.misc.logsumexp(expo) - log(splx.sum())
# Prior distribution
mvn = scipy.stats.multivariate_normal(mu, sigma)
sigmainv = np.linalg.inv(sigma)
a0 = logfac(sampling) - logfac(counts) - logfac(sampling - counts)
def f(Z):
return (a0 + counts * np.log(Z) + (sampling - counts) * np.log(1. - Z)).sum()
def g(Z):
Z0 = np.minimum(Z, 0)
Z1 = np.maximum(Z - 1, 0)
return -(f(Z) + mvn.logpdf(Z)) + 5 * 0.5 * (np.dot(Z0, Z0) + np.dot(Z1, Z1))
def grad(Z):
Z0 = np.minimum(Z, 0)
Z1 = np.maximum(Z - 1, 0)
return -((counts / Z) - (sampling - counts) / (1. - Z) - np.dot(sigmainv, Z - mu)) + 5 * (Z0 + Z1)
xopt, fopt, gopt, Bopt, _, _, _ = scipy.optimize.fmin_bfgs(g, x, grad, full_output=True, gtol=1e-5)
print(xopt)
print(mu)
print(x)
print(fopt, f(xopt), mvn.logpdf(xopt))
return -fopt + (K / 2) * log(2 * pi) - (1 / 2) * np.linalg.slogdet(Bopt)[1]
# latent_mvnorm_ll = latent_mvnorm_ll_is
def mvnorm_ll(x, mu, sigma, mask=False):
'Log-likelihood function of N(mu, sigma) rv.'
# if __debug__: print("mvnorm_ll")
# const * -(1/2) * (x - mu)^T (sigma^-1) (x - mu)
if mask:
bdry = np.logical_and(x >= 0.05, x <= 0.95)
if not np.any(bdry):
print("no data points remain")
print(x)
return -np.inf
x = x[bdry]
mu = mu[bdry]
sigma = sigma[np.ix_(bdry, bdry)]
alpha = 0.05
# print("pre-shrunk", np.linalg.eigvals(sigma)[[1, -1]])
sigma = (1. - alpha) * sigma + alpha * np.eye(sigma.shape[0])
try:
np.linalg.cholesky(sigma)
except np.linalg.LinAlgError:
return -np.inf
# print("shrunk", np.linalg.eigvals(sigma)[[1, -1]])
mvn = scipy.stats.multivariate_normal(mu, sigma)
return mvn.logpdf(x)
class Likelihood:
Z = [
(True, False, False), # zL
(False, True, False), # zS
(False, False, True), # zR
(True, True, False), # zLS
(True, False, True), # zLR
(False, True, True), # zRS
(True, True, True) # zLRS
]
def __init__(self, data, init_haps, times, positions, selected_position, sampling,
verbose=False, reset=False):
'''Initialize the model.
T is the number of sampled generations; L is the length of
the region being considered; K is number of founder lines;
R is number of replicates.
data: T x L x R matrix of derived allele frequencies
init_haps: K x L matrix of initial haplotypes (boolean)
times: T x 1 vector of time periods in which sampling occurred
positions: L x 1 vector of positions at which sampling occurred
selected_position: \in positions; position which is under selection.
All other positions assumed neutral.
sampling: T x L x R matrix if coverage depth (or something broadcastable to
those dimensions.) Uses latent model with binomial sampling overlaid. (Slow.)
If None, then use the non-latent model.
verbose: Emit extra debugging info.
reset: Clear cached recursive function call evaluations
during each call to mean_cov(). Needed in some cases to
control memory consumption.
'''
self.verbose = verbose
self.reset = reset
self.selected_position = selected_position
self.data = data
self.sampling = sampling
if sampling is not None:
sampling = np.array(sampling)
if sampling.size == 1:
self.sampling = np.zeros(data.shape)
self.sampling[:] = sampling
self.times = np.array(times, dtype=np.int32)
self.positions = np.array(positions, dtype=np.int32)
self.dists = abs(np.subtract.outer(self.positions, self.positions))
self.n_replicates = self.data.shape[-1]
T = len(self.times)
L = len(self.positions)
self.M = np.zeros([self.n_replicates, T, L], dtype=np.double)
self.C = np.zeros([self.n_replicates, T, L, T, L], dtype=np.double)
# Construct initial haplotypes
if np.array(init_haps).shape == (L, L, 7):
self.init_haps = init_haps
else:
assert init_haps.shape[1] == len(self.positions)
self.init_haps = np.zeros([L, L, 7], dtype=np.double)
F = init_haps.shape[0]
for (i1, l1), (i2, l2) in itertools.product(enumerate(self.positions), repeat=2):
if selected_position:
sp = self.positions.tolist().index(selected_position)
else:
sp = i1
cc = collections.Counter(map(tuple, init_haps[:, (i1, sp, i2)]))
self.init_haps[i1, i2] = [cc[k] / F for k in self.Z]
def mean_cov(self, N, r, h, s):
'''Update the mean and covariance for this model for given
parameter values.
N: Effective population size.
r: Recombination rate.
h: Dominance paremeter.
s: Fitness parameter.
'''
if self.reset or psutil.virtual_memory().percent > 90.0:
pyexp.reset()
# Update mean and covariance matrices in place. Returns None.
for i in range(self.n_replicates):
pyexp.mean_cov(self.M[i], self.C[i], self.positions,
list(self.positions).index(self.selected_position),
self.init_haps, self.times, N, r, h, s,
False)
def print_data(self):
for i in range(self.data.shape[-1]):
print(self.data[..., i])
def maxlik(self, **kwargs):
'''Maximize likelihood over selection parameter.'''
if self.verbose:
self.print_data()
def negll(x):
if self.verbose:
print(x)
N = kwargs.get('N', x)
log10r = kwargs.get('log10r', x)
h = kwargs.get('h', x)
return -self.likelihood(N, 10**log10r, h, x)
return scipy.optimize.minimize_scalar(negll, bounds=kwargs['bounds'],
method='bounded', options={'disp': True})
class GaussianLikelihood(Likelihood):
def _latent_mvnorm_ll(self, x, mu, sigma, sampling):
K = len(x)
try:
np.linalg.cholesky(sigma)
except np.linalg.LinAlgError:
print(sigma)
return -np.inf
# Importance sampler
counts = x * sampling
a0 = logfac(sampling) - logfac(counts) - logfac(sampling - counts)
# Prior distribution
mvn = scipy.stats.multivariate_normal(mu, sigma)
NS = 20000
Z = mvn.rvs(NS)
if len(Z.shape) == 1:
Z.shape = (Z.shape[0], 1)
splx = np.all([Z > 0, Z < 1], axis=(0, 2))
Z = Z[splx]
s = (a0 + counts * np.log(Z) + (sampling - counts) * np.log(1. - Z)).sum(axis=1)
val = scipy.misc.logsumexp(s) - log(splx.sum())
return val
def likelihood(self, N, r, h, s):
self.mean_cov(N, r, h, s)
ipos = list(range(len(self.positions)))
itimes = list(range(len(self.times)))
dinds = np.ix_(itimes, ipos)
ddinds = np.ix_(itimes, ipos, itimes, ipos)
M = self.M[0][dinds]
C = self.C[0][ddinds]
dd = C.shape[0] * C.shape[1]
dtas = self.data[dinds]
if self.sampling is not None:
lmv = [self._latent_mvnorm_ll(dtas[..., i].reshape(dd),
M.reshape(dd), C.reshape(dd, dd),
self.sampling[..., i].reshape(dd))
for i in range(self.n_replicates)]
return sum(lmv)
else:
mv = [mvnorm_ll(dtas[..., i].reshape(dd), M.reshape(dd), C.reshape(dd, dd))
for i in range(self.n_replicates)]
return sum(mv)