-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflop_counter.py
239 lines (195 loc) · 7.25 KB
/
flop_counter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Credits: Horace He
# https://dev-discuss.pytorch.org/t/the-ideal-pytorch-flop-counter-with-torch-dispatch/505
# https://gist.github.com/soumith/5f81c3d40d41bb9d08041431c656b233
import torch
import torch.nn as nn
from torch.utils._pytree import tree_map, tree_flatten
from typing import List, Any
from numbers import Number
from collections import defaultdict
from torch.utils._python_dispatch import TorchDispatchMode
aten = torch.ops.aten
def get_shape(i):
return i.shape
def prod(x):
res = 1
for i in x:
res *= i
return res
def matmul_flop(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for matmul.
"""
# Inputs should be a list of length 2.
# Inputs contains the shapes of two matrices.
input_shapes = [get_shape(v) for v in inputs]
assert len(input_shapes) == 2, input_shapes
assert input_shapes[0][-1] == input_shapes[1][-2], input_shapes
flop = prod(input_shapes[0]) * input_shapes[-1][-1]
return flop
def addmm_flop(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for fully connected layers.
"""
# Count flop for nn.Linear
# inputs is a list of length 3.
input_shapes = [get_shape(v) for v in inputs[1:3]]
# input_shapes[0]: [batch size, input feature dimension]
# input_shapes[1]: [batch size, output feature dimension]
assert len(input_shapes[0]) == 2, input_shapes[0]
assert len(input_shapes[1]) == 2, input_shapes[1]
batch_size, input_dim = input_shapes[0]
output_dim = input_shapes[1][1]
flops = batch_size * input_dim * output_dim
return flops
def bmm_flop(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for the bmm operation.
"""
# Inputs should be a list of length 2.
# Inputs contains the shapes of two tensor.
assert len(inputs) == 2, len(inputs)
input_shapes = [get_shape(v) for v in inputs]
n, c, t = input_shapes[0]
d = input_shapes[-1][-1]
flop = n * c * t * d
return flop
def conv_flop_count(
x_shape: List[int],
w_shape: List[int],
out_shape: List[int],
transposed: bool = False,
) -> Number:
"""
Count flops for convolution. Note only multiplication is
counted. Computation for addition and bias is ignored.
Flops for a transposed convolution are calculated as
flops = (x_shape[2:] * prod(w_shape) * batch_size).
Args:
x_shape (list(int)): The input shape before convolution.
w_shape (list(int)): The filter shape.
out_shape (list(int)): The output shape after convolution.
transposed (bool): is the convolution transposed
Returns:
int: the number of flops
"""
batch_size = x_shape[0]
conv_shape = (x_shape if transposed else out_shape)[2:]
flop = batch_size * prod(w_shape) * prod(conv_shape)
return flop
def conv_flop(inputs: List[Any], outputs: List[Any]):
"""
Count flops for convolution.
"""
x, w = inputs[:2]
x_shape, w_shape, out_shape = (get_shape(x), get_shape(w), get_shape(outputs[0]))
transposed = inputs[6]
return conv_flop_count(x_shape, w_shape, out_shape, transposed=transposed)
def transpose_shape(shape):
return [shape[1], shape[0]] + list(shape[2:])
def conv_backward_flop(inputs: List[Any], outputs: List[Any]):
grad_out_shape, x_shape, w_shape = [get_shape(i) for i in inputs[:3]]
output_mask = inputs[-1]
fwd_transposed = inputs[7]
flop_count = 0
if output_mask[0]:
grad_input_shape = get_shape(outputs[0])
flop_count += conv_flop_count(
grad_out_shape, w_shape, grad_input_shape, not fwd_transposed
)
if output_mask[1]:
grad_weight_shape = get_shape(outputs[1])
flop_count += conv_flop_count(
transpose_shape(x_shape), grad_out_shape, grad_weight_shape, fwd_transposed
)
return flop_count
flop_mapping = {
aten.mm: matmul_flop,
aten.matmul: matmul_flop,
aten.addmm: addmm_flop,
aten.bmm: bmm_flop,
aten.convolution: conv_flop,
aten._convolution: conv_flop,
aten.convolution_backward: conv_backward_flop,
}
def normalize_tuple(x):
if not isinstance(x, tuple):
return (x,)
return x
class FlopCounterMode(TorchDispatchMode):
def __init__(self, model=None):
self.flop_counts = defaultdict(lambda: defaultdict(int))
self.parents = ["Global"]
if model is not None:
for name, module in dict(model.named_children()).items():
module.register_forward_pre_hook(self.enter_module(name))
module.register_forward_hook(self.exit_module(name))
def enter_module(self, name):
def f(module, inputs):
self.parents.append(name)
inputs = normalize_tuple(inputs)
out = self.create_backwards_pop(name)(*inputs)
return out
return f
def exit_module(self, name):
def f(module, inputs, outputs):
assert self.parents[-1] == name
self.parents.pop()
outputs = normalize_tuple(outputs)
return self.create_backwards_push(name)(*outputs)
return f
def create_backwards_push(self, name):
class PushState(torch.autograd.Function):
@staticmethod
def forward(ctx, *args):
args = tree_map(
lambda x: x.clone() if isinstance(x, torch.Tensor) else x, args
)
if len(args) == 1:
return args[0]
return args
@staticmethod
def backward(ctx, *grad_outs):
self.parents.append(name)
return grad_outs
return PushState.apply
def create_backwards_pop(self, name):
class PopState(torch.autograd.Function):
@staticmethod
def forward(ctx, *args):
args = tree_map(
lambda x: x.clone() if isinstance(x, torch.Tensor) else x, args
)
if len(args) == 1:
return args[0]
return args
@staticmethod
def backward(ctx, *grad_outs):
assert self.parents[-1] == name
self.parents.pop()
return grad_outs
return PopState.apply
def __enter__(self):
self.flop_counts.clear()
super().__enter__()
def __exit__(self, *args):
gmacs = round(sum(self.flop_counts["Global"].values()) / 1e9, 2)
gflops = 2 * gmacs # flops = 2 * macs approximately
print(f"Total: {gflops} GFlops")
for mod in self.flop_counts.keys():
print(f"Module: ", mod)
for k, v in self.flop_counts[mod].items():
mod_gmacs = round(v / 1e9, 2)
mod_gflops = mod_gmacs * 2
print(f"{k}: {mod_gflops} GFLOPS")
print()
super().__exit__(*args)
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
kwargs = kwargs if kwargs else {}
out = func(*args, **kwargs)
func_packet = func._overloadpacket
if func_packet in flop_mapping:
flop_count = flop_mapping[func_packet](args, normalize_tuple(out))
for par in self.parents:
self.flop_counts[par][func_packet] += flop_count
return out