forked from jadore801120/attention-is-all-you-need-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcornell_preprocess.py
executable file
·250 lines (186 loc) · 8.22 KB
/
cornell_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Preprocess cornell movie dialogs dataset
from multiprocessing import Pool
import argparse
import pickle
import random
import os
from urllib.request import urlretrieve
from zipfile import ZipFile
from pathlib import Path
from tqdm import tqdm
from model.utils import Tokenizer, Vocab, PAD_TOKEN, SOS_TOKEN, EOS_TOKEN
project_dir = Path(__file__).resolve().parent
datasets_dir = project_dir.joinpath('datasets/')
cornell_dir = datasets_dir.joinpath('cornell/')
# Tokenizer
tokenizer = Tokenizer('spacy')
def prepare_cornell_data():
"""Download and unpack dialogs"""
zip_url = 'http://www.mpi-sws.org/~cristian/data/cornell_movie_dialogs_corpus.zip'
zipfile_path = datasets_dir.joinpath('cornell.zip')
if not datasets_dir.exists():
datasets_dir.mkdir()
# Prepare Dialog data
if not cornell_dir.exists():
print(f'Downloading {zip_url} to {zipfile_path}')
urlretrieve(zip_url, zipfile_path)
print(f'Successfully downloaded {zipfile_path}')
zip_ref = ZipFile(zipfile_path, 'r')
zip_ref.extractall(datasets_dir)
zip_ref.close()
datasets_dir.joinpath('cornell movie-dialogs corpus').rename(cornell_dir)
else:
print('Cornell Data prepared!')
def loadLines(fileName,
fields=["lineID", "characterID", "movieID", "character", "text"],
delimiter=" +++$+++ "):
"""
Args:
fileName (str): file to load
field (set<str>): fields to extract
Return:
dict<dict<str>>: the extracted fields for each line
"""
lines = {}
with open(fileName, 'r', encoding='iso-8859-1') as f:
for line in f:
values = line.split(delimiter)
# Extract fields
lineObj = {}
for i, field in enumerate(fields):
lineObj[field] = values[i]
lines[lineObj['lineID']] = lineObj
return lines
def loadConversations(fileName, lines,
fields=["character1ID", "character2ID", "movieID", "utteranceIDs"],
delimiter=" +++$+++ "):
"""
Args:
fileName (str): file to load
field (set<str>): fields to extract
Return:
dict<dict<str>>: the extracted fields for each line
"""
conversations = []
with open(fileName, 'r', encoding='iso-8859-1') as f:
for line in f:
values = line.split(delimiter)
# Extract fields
convObj = {}
for i, field in enumerate(fields):
convObj[field] = values[i]
# Convert string to list (convObj["utteranceIDs"] == "['L598485', 'L598486', ...]")
lineIds = eval(convObj["utteranceIDs"])
# Reassemble lines
convObj["lines"] = []
for lineId in lineIds:
convObj["lines"].append(lines[lineId])
conversations.append(convObj)
return conversations
def train_valid_test_split_by_conversation(conversations, split_ratio=[0.8, 0.1, 0.1]):
"""Train/Validation/Test split by randomly selected movies"""
train_ratio, valid_ratio, test_ratio = split_ratio
assert train_ratio + valid_ratio + test_ratio == 1.0
n_conversations = len(conversations)
# Random shuffle movie list
random.seed(0)
random.shuffle(conversations)
# Train / Validation / Test Split
train_split = int(n_conversations * train_ratio)
valid_split = int(n_conversations * (train_ratio + valid_ratio))
train = conversations[:train_split]
valid = conversations[train_split:valid_split]
test = conversations[valid_split:]
print(f'Train set: {len(train)} conversations')
print(f'Validation set: {len(valid)} conversations')
print(f'Test set: {len(test)} conversations')
return train, valid, test
def tokenize_conversation(lines):
sentence_list = [tokenizer(line['text']) for line in lines]
return sentence_list
def pad_sentences(conversations, max_sentence_length=30, max_conversation_length=10):
def pad_tokens(tokens, max_sentence_length=max_sentence_length):
n_valid_tokens = len(tokens)
if n_valid_tokens > max_sentence_length - 1:
tokens = tokens[:max_sentence_length - 1]
n_pad = max_sentence_length - n_valid_tokens - 1
tokens = tokens + [EOS_TOKEN] + [PAD_TOKEN] * n_pad
return tokens
def pad_conversation(conversation):
conversation = [pad_tokens(sentence) for sentence in conversation]
return conversation
all_padded_sentences = []
all_sentence_length = []
for conversation in conversations:
if len(conversation) > max_conversation_length:
conversation = conversation[:max_conversation_length]
sentence_length = [min(len(sentence) + 1, max_sentence_length) # +1 for EOS token
for sentence in conversation]
all_sentence_length.append(sentence_length)
sentences = pad_conversation(conversation)
all_padded_sentences.append(sentences)
sentences = all_padded_sentences
sentence_length = all_sentence_length
return sentences, sentence_length
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Maximum valid length of sentence
# => SOS/EOS will surround sentence (EOS for source / SOS for target)
# => maximum length of tensor = max_sentence_length + 1
parser.add_argument('-s', '--max_sentence_length', type=int, default=30)
parser.add_argument('-c', '--max_conversation_length', type=int, default=10)
# Split Ratio
split_ratio = [0.8, 0.1, 0.1]
# Vocabulary
parser.add_argument('--max_vocab_size', type=int, default=20000)
parser.add_argument('--min_vocab_frequency', type=int, default=5)
# Multiprocess
parser.add_argument('--n_workers', type=int, default=os.cpu_count())
args = parser.parse_args()
max_sent_len = args.max_sentence_length
max_conv_len = args.max_conversation_length
max_vocab_size = args.max_vocab_size
min_freq = args.min_vocab_frequency
n_workers = args.n_workers
# Download and extract dialogs if necessary.
prepare_cornell_data()
print("Loading lines")
lines = loadLines(cornell_dir.joinpath("movie_lines.txt"))
print('Number of lines:', len(lines))
print("Loading conversations...")
conversations = loadConversations(cornell_dir.joinpath("movie_conversations.txt"), lines)
print('Number of conversations:', len(conversations))
print('Train/Valid/Test Split')
# train, valid, test = train_valid_test_split_by_movie(conversations, split_ratio)
train, valid, test = train_valid_test_split_by_conversation(conversations, split_ratio)
def to_pickle(obj, path):
with open(path, 'wb') as f:
pickle.dump(obj, f)
for split_type, conv_objects in [('train', train), ('valid', valid), ('test', test)]:
print(f'Processing {split_type} dataset...')
split_data_dir = cornell_dir.joinpath(split_type)
split_data_dir.mkdir(exist_ok=True)
print(f'Tokenize.. (n_workers={n_workers})')
def _tokenize_conversation(conv):
return tokenize_conversation(conv['lines'])
with Pool(n_workers) as pool:
conversations = list(tqdm(pool.imap(_tokenize_conversation, conv_objects),
total=len(conv_objects)))
conversation_length = [min(len(conv['lines']), max_conv_len)
for conv in conv_objects]
sentences, sentence_length = pad_sentences(
conversations,
max_sentence_length=max_sent_len,
max_conversation_length=max_conv_len)
print('Saving preprocessed data at', split_data_dir)
to_pickle(conversation_length, split_data_dir.joinpath('conversation_length.pkl'))
to_pickle(sentences, split_data_dir.joinpath('sentences.pkl'))
to_pickle(sentence_length, split_data_dir.joinpath('sentence_length.pkl'))
if split_type == 'train':
print('Save Vocabulary...')
vocab = Vocab(tokenizer)
vocab.add_dataframe(conversations)
vocab.update(max_size=max_vocab_size, min_freq=min_freq)
print('Vocabulary size: ', len(vocab))
vocab.pickle(cornell_dir.joinpath('word2id.pkl'), cornell_dir.joinpath('id2word.pkl'))
print('Done!')