-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
257 lines (210 loc) · 10.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
"""Code taken and modified from Github repository https://github.com/kuc2477/pytorch-ntm by Ha Junsoo under MIT license."""
from functools import reduce
import operator
import os
import os.path
import shutil
import torch
from torch.autograd import Variable
from torch.nn import init, functional as F
from nlputils import convert_npy_to_str
def load_train_args(parser):
parser.add_argument('--source', default=None, help='Directory to look for data files')
parser.add_argument('--model_path', default=None, help='File path where model checkpoint is saved')
parser.add_argument('--temp', help='Where to save generated dataset and vocab files')
parser.add_argument('--tempval', default=None, help='Where to save generated validation dataset and vocab files')
parser.add_argument('--regen', default=False, action='store_true', help='Renerate vocabulary')
parser.add_argument('--regenval', default=False, action='store_true', help='Regenerate validation dataset')
parser.add_argument('--device', default='cuda:0', help='Cuda device (or cpu) for tensor operations')
parser.add_argument('--epochs', default=1, action='store', type=int, help='Number of epochs to run model for')
parser.add_argument('--restore', default=False, action='store_true', help='Set to restore model from save')
parser.add_argument('--num_print', default='1', help='Number of batches to print')
parser.add_argument('--run', default=None, help='Path to save run values for viewing with Tensorboard')
parser.add_argument('--tgdisable', default=False, action='store_true', help='If true, suppress Telegram alerts')
parser.add_argument('--max_examples', default=None, help='Number of examples to use when training on dataset')
# parser.add_argument('--dataset', default='ubuntu', help='Choose either opensubtitles or ubuntu dataset to train')
parser.add_argument('--val', default=None, help='Validation set to use for model evaluation')
parser.add_argument('--samples_file', default=None, help='File to write sampled outputs')
def save_checkpoint(model, model_dir, iteration, precision, best=True):
path = os.path.join(model_dir, model.name)
path_best = os.path.join(model_dir, '{}-best'.format(model.name))
# save the checkpoint.
if not os.path.exists(model_dir):
os.makedirs(model_dir)
torch.save({
'state': model.state_dict(),
'iteration': iteration,
'precision': precision,
}, path)
# override the best model if it's the best.
if best:
shutil.copy(path, path_best)
print('=> updated the best model of {name} at {path}'.format(
name=model.name, path=path_best
))
# notify that we successfully saved the checkpoint.
print('=> saved the model {name} to {path}'.format(
name=model.name, path=path
))
def load_checkpoint(model, model_dir, best=True):
path = os.path.join(model_dir, model.name)
path_best = os.path.join(model_dir, '{}-best'.format(model.name))
# load the checkpoint.
checkpoint = torch.load(path_best if best else path)
print('=> loaded checkpoint of {name} from {path}'.format(
name=model.name, path=(path_best if best else path)
))
# load parameters and return the checkpoint's epoch and precision.
model.load_state_dict(checkpoint['state'])
iteration = checkpoint['iteration']
precision = checkpoint['precision']
return iteration, precision
def validate(model, task,
test_size=256, batch_size=32,
cuda=False, verbose=True):
data_loader = task.data_loader(batch_size)
total_tested = 0
total_bits = 0
wrong_bits = 0
for x, y in data_loader:
# break on test size.
if total_tested >= test_size:
break
# prepare the batch and reset the model's state variables.
model.reset(x.size(0), cuda=cuda)
x = Variable(x).cuda() if cuda else Variable(x)
y = Variable(y).cuda() if cuda else Variable(y)
# run the model through the sequences.
for index in range(x.size(1)):
model(x[:, index, :])
# run the model to output sequences.
predictions = []
for index in range(y.size(1)):
activation = task.model_output_activation(model())
predictions.append(activation.round())
predictions = torch.stack(predictions, 1).long()
# calculate the wrong bits per sequence.
total_tested += x.size(0)
total_bits += reduce(operator.mul, y.size())
wrong_bits += torch.abs(predictions-y.long()).sum().data[0]
precision = 1 - wrong_bits/total_bits
if verbose:
print('=> precision: {prec:.4}'.format(prec=precision))
return precision
def xavier_initialize(model, uniform=False):
modules = [
m for n, m in model.named_modules() if
'conv' in n or 'linear' in n
]
parameters = [
p for
m in modules for
p in m.parameters() if
p.dim() >= 2
]
for p in parameters:
init.xavier_normal(p) if uniform else init.xavier_normal(p)
def gaussian_intiailize(model, std=.1):
for p in model.parameters():
init.normal(p, std=std)
def write_example(file, history, label, prediction):
"""
Write a single conversation to a file.
:param file: file to write to, in write mode
:param history: string, conversation history leading up to response
:param prediction: string, response prediction of model
:param label: string, true response from dataset
:return: None
"""
file.write('Input sentence: %s\n' % history)
file.write('Ground truth: %s\n' % label)
file.write('Generated response: %s\n' % prediction)
file.write('\n')
def print_numpy_examples(vocab, eos, history, response, response_preds, convo_preds=None, samples_file=None):
for j in range(history.shape[0]):
np_pred = response_preds[j].cpu().numpy()
np_context = history[j].cpu().numpy()
np_target = response[j].cpu().numpy()
context = convert_npy_to_str(np_context, vocab, eos)
pred = convert_npy_to_str(np_pred, vocab, eos)
target = convert_npy_to_str(np_target, vocab, eos)
if convo_preds is not None:
# optionally print out the whole conversation if it is available
np_complete_convo = convo_preds[j].cpu().numpy()
complete_convo = convert_npy_to_str(np_complete_convo, vocab, eos)
print('Completed convo: %s' % complete_convo)
print('History: %s' % context)
print('Prediction: %s' % pred)
print('Target: %s' % target)
print()
if samples_file is not None:
write_example(samples_file, context, target, pred)
def gather_logits(convo_logits, split_indices, max_len):
"""
Extract all tokens in convo that appear after index in split_indices (batched). Return
tensor containing these tokens extracted.
:param convo: (batch_size, convo_len) tensor containing token indices
:param split_indices: (batch_size,) tensor, for each example giving the index of the first token to extract
:param max_len: maximum number of 1's in a row of the mask, maximum extracted response
:return: (batch_size, max_len) tensor containing extracted indices
"""
batch_size = convo_logits.shape[0]
convo_len = convo_logits.shape[1]
vocab_len = convo_logits.shape[2]
result = torch.zeros([batch_size, max_len, vocab_len]).to(convo_logits.device)
for i in range(batch_size):
response_len = min(convo_len - split_indices[i], max_len)
result[i, :response_len] = convo_logits[i, split_indices[i]:split_indices[i] + response_len, :]
return result
def approx_equal(x, y, e=1e-3):
return torch.lt(torch.abs(x-y), e).all()
def move_prob_from_s_to_eos(logits, vocab):
"""Take probability mass from </s> symbol and place it on the <eos> symbol."""
# compute probabilities from logits
probs = F.softmax(logits - torch.max(logits), dim=-1) # b x t x v
# transfer mass from <\s> to <eos>
slashsprobs = probs[:, :, vocab['</s>']] # b x t
probs[:, :, vocab['<eos>']] = probs[:, :, vocab['<eos>']] + slashsprobs # b x t
probs[:, :, vocab['</s>']] = probs[:, :, vocab['</s>']] - slashsprobs # b x t
ones = torch.ones(probs.shape[0], probs.shape[1]).to(logits.device)
dist_sum = probs.sum(dim=-1)
assert approx_equal(ones, dist_sum)
# take the log to get logits back
backlogits = torch.log(probs)
assert backlogits.ne(logits).all()
# return logits
return backlogits
def replace_eos_slashs(utterances, vocab, reverse=False):
"""
For each utterance, finds all <eos> tokens and replaces them
with </s>. Tested.
:param utterances: (batch_size, max_len) tensor with indices
:param vocab: Vocab object containing bi-directional mapping tokens <--> indices
:param reverse: if reverse, replace slashs with eos
:return:
"""
tk_eos = vocab['<eos>']
tk_s = vocab['</s>']
if reverse:
tmp = tk_eos
tk_eos = tk_s
tk_s = tmp
eos_tokens = (utterances == tk_eos).long() # 1 if token is eos
s_tokens = eos_tokens * tk_s # map where 0 is normal token and tk_s has location of eos with index of /s
return utterances * (1-eos_tokens) + s_tokens # set all eos to zero, then add /s token map
def gather_response(convo, split_indices, max_len):
"""
Extract all tokens in convo that appear after index in split_indices (batched). Return
tensor containing these tokens extracted.
:param convo: (batch_size, convo_len) tensor containing token indices
:param split_indices: (batch_size,) tensor, for each example giving the index of the first token to extract
:param max_len: maximum number of 1's in a row of the mask, maximum extracted response
:return: (batch_size, max_len) tensor containing extracted indices
"""
batch_size = convo.shape[0]
convo_len = convo.shape[1]
result = torch.zeros([batch_size, max_len]).long()
for i in range(batch_size):
response_len = min(convo_len - split_indices[i], max_len)
result[i, :response_len] = convo[i, split_indices[i]:split_indices[i] + response_len]
return result