-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
226 lines (163 loc) · 7.24 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>COMP 5300: Deep Learning for NLP -- Spring 2023 @ UMass Lowell</title>
<meta name="description" content="">
<meta name="author" content="">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link href="//fonts.googleapis.com/css?family=Raleway:400,300,600" rel="stylesheet" type="text/css">
<link rel="stylesheet" href="css/normalize.css">
<link rel="stylesheet" href="css/skeleton.css">
<link rel="stylesheet" href="css/main.css">
</head>
<body>
<div class="container">
<header class="row">
<h4>COMP 5300: Deep Learning for NLP -- Spring 2023<br/><br/>
<img src="images/logo.png" width="300" height="200">
</h4>
</header>
<div class="row">
<div class="two columns">
<p>
<a class="button-half menu" href="index.html">Home</a>
<a class="button-half menu" href="schedule.html">Schedule</a>
<a class="button-half menu" href="homeworks.html">Homeworks</a>
<br/><br/>
</p>
<h5>Class meets</h5>
<p>
Thu 3:30-4:45 pm
<br/>
Olsen 405
</p>
<p>
Mon 2-3:15 pm
<br/>
Dandeneau 220
</p>
<iframe width="100%" height="300" frameborder="0" scrolling="no" marginheight="0" marginwidth="0" src="https://maps.google.com/maps?width=100%25&height=600&hl=en&q=Olsen%20Hall+()&t=&z=14&ie=UTF8&iwloc=B&output=embed"><a href="https://www.maps.ie/distance-area-calculator.html">measure area map</a></iframe>
</div>
<div class="ten columns">
<!--<p style="color:red;font-weight:bold;font-size:20px">-->
<!--Due to the weather conditions the invitational round at our site was moved to tomorrow (March 9) at the same time!-->
<!--</p>-->
<h4>Course description</h4>
<p>
In this course, we will study contemporary machine learning methods for understanding and generation of human language. If you have taken machine learning and know how to implement, train, and deploy a classifier -- and now you want to understand how to bridge the gap between that and contemporary language models that can answer questions and hold a conversation, this course is for you. Through a series of homeworks, you will learn how to implement and train neural models to process language, from word-level embeddings to Transformer language models, including implementation, pre-training, fine-tuning and other modes of deployment of such models for handling different aspects of processing human language
</p>
<p>
<b>Pre-requisite</b>: COMP 4220 / COMP 5220 Machine Learning or equivalent (with permission of instructor).
</p>
<h4>Class format</h4>
<p>Each class will be divided into</p>
<ul>
<li>Lecture (75 min)</li>
<li>Practicum/Lab (75 min)</li>
</ul>
<p>There will be a 10-minute break after the lecture.</p>
<p>During the Practicum/Lab segment of the class, we will focus on technical (coding) skills and provide homework guidance.
You will be expected to work on your homework during this time.</p>
<h4>Course materials</h4>
<p>
Class recordings will be available on <a href="https://echo360.org/home">Echo</a>.
</p>
<p>
Class-related discussions and announcements will be conducted on Discord (see Blackboard for invite link).
</p>
<h4>COVID Safety</h4>
<p>
If you have any flu-like symptoms, or if you or somebody close to you have tested positive for COVID, please do not attend the class in person. If you are able to, please join the class meeting remotely. You should email your instructor for a zoom link.
</p>
<h4 id="staff">Staff</h4>
<table>
<thead>
<tr>
<th> </th>
<th>Name</th>
<th>Contact</th>
<th>Office</th>
<th>Office hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor</td>
<td>Anna Rumshisky</td>
<td>[email protected]</td>
<td>Dandeneau 318</td>
<td>TBA</td>
</tr>
</tbody>
<tbody>
<tr>
<td>TA</td>
<td>Vlad Lialin</td>
<td>[email protected]</td>
<td>Dandeneau 415</td>
<td>TBA</td>
</tr>
</tbody>
</table>
<h4 id="remote-learning">Remote learning</h4>
<p>Class recordings will be available on Echo (you need to log in with your University logon):</p>
<p><a href="https://echo360.org/home">Echo recordings</a></p>
<h4>Cheat sheets:</h4>
<ul>
<li><a href="https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning">Machine learning cheat sheet</a></li>
<li><a href="https://d2l.ai/chapter_preliminaries/index.html">Review: Math preliminaries</a></li>
<li><a href="http://datasciencefree.com/python.pdf">Python cheat sheet</a></li>
<li><a href="http://datacamp-community-prod.s3.amazonaws.com/ba1fe95a-8b70-4d2f-95b0-bc954e9071b0"><code class="language-plaintext highlighter-rouge">Numpy</code> cheat shet</a></li>
<li><a href="https://d2l.ai/chapter_appendix-mathematics-for-deep-learning/index.html">Review: Mathematics for deep learning</a></li>
<li><a href="https://www.freecodecamp.org/news/git-and-github-for-beginners/">Github for beginners</a></li>
<li><a href="https://dangitgit.com/en">Github help</a></li>
</ul>
<h4 id="grading">Grading</h4>
<table>
<tbody>
<tr>
<td>Homeworks</td>
<td>70%</td>
</tr>
<tr>
<td>Research Paper Presentations</td>
<td>10%</td>
</tr>
<tr>
<td>Final Oral Interview</td>
<td>20%</td>
</tr>
</tbody>
</table>
<p>There will be no final or midterm.</p>
<h4 id="homeworks">Homeworks</h4>
<ul>
<li>We will have 6-7 homeworks.</li>
<li>Homeworks are due immediiately before class on the day they are due.</li>
<li>Homeworks will be posted on the course website and linked from the course schedule</li>
<li>Homeworks must be submitted via Blackboard.</li>
</ul>
<h4 id="research-paper-presentations">Research Paper Presentations</h4>
<ul>
<li>Each student will be required to present a research paper assigned as readings for the class.</li>
</ul>
<h4 id="late-policy">Late Policy:</h4>
<ul>
<li>Homeworks will be accepted up to 2 (two) days after the original due date.</li>
<li>Homeworks submitted up to 1 full day late will be graded at a 10% reduction.</li>
<li>Homeworks submitted up to 2 full days late will be graded at a 20% reduction.</li>
<li>After 2 days, Homeworks will not be accepted.</li>
</ul>
<h4 id="collaboration-policy">Collaboration Policy:</h4>
<ul>
<li>Homeworks must be done individually.</li>
</ul>
<p>Violating the collaboration policy by copying other people's work, as well as any other instance of cheating,
including copying solutions from existing sources, carries the following penalties: (1) First violation leads
to getting zero credit for the submitted assignment (2) Second violation leads to failing the course.</p>
</div>
</div>
</div>
</body>
</html>